B g

@ by Frank Sweet

Future-event records tend to be quite vola-
tile. Their short lives and high flowrate of-
ten call for a cookie-cutter entity to help
stamp them out in assembly-line fashion.

We've been designing a mainte-
nance equipment spare parts inventory sys-
tem called MEsPIS. Its goal is to report
when we must reorder spare parts, based
on their stock balance being too low. So far,
our database looks like this:

Part, the hub of our design, contains
ID-number, description, and on-hand-
stock-qty for each spare part. The two past-
event records document every occasion
when the part’s on-hand balance was up-
dated. The two future events predict arriv-
als of ordered parts and planned usage.
Now, we’ll examine the template, or cook-
ie-cutter, pattern.

Compute the volatility of our part-
out future event. Say 10 maintenance work
orders are done each month. They are
planned 30 days in advance, and each re-
quires about 100 different kinds of spare
parts. Once the parts are actually con-
sumed, their future-event records vanish,
replaced by past events. Hence, some 1,000
new future part-out records are born every
month, each with a life span of about one
month. This 1,000-record population has a

The final three installments of our 14-part series,
Process-Driven Data Design,

THE TEMPLATE

volatility of 100% per month. Work it out,
and you'll see that if maintenance work or-
ders were scheduled three months in ad-
vance, the volatility would be only 33% per
month. In other words, future-event vola-
tility is inversely proportional to the user's
planning horizon; the less farseeing the
forecast, the higher the volatility.

Contrast this with past events. They
appear when parts are consumed and last
for however long we need their audit trail.
For example, keeping records in a system
for six months results in a 17% monthly
volatility. Past-event volatility is inversely
proportional to the user’s need for history;
the more history needed, the lower the
volatility.

Since hindsight is sharper than
prophecy, any application’s future is less
certain than its past. Consequently, future-
event records are, by far, the most volatile
entities in a database. They are produced in
a steady stream, live out their short lives,
and vanish. :

Precisely because they emerge in a
steady stream, loading them with data can
be tiresome. A model or template record
helps. This pattern tells us that when we
have a highly volatile entity, we should
plan how we’ll produce its fields. One way
is to find a record wherein we can house
standard default values for the fields.

Consider lead time. We saw last is-
sue that our future part-in record carries a
date telling when the event (part’s arrival)
is anticipated. Notice that this information
has value even beyond the scope of our sys-
tem. With it, for instance, we could pro-
duce a report comparing the expected
arrival dates of those framis bearings we
spoke of with their planned consumption
dates. True, such an expediter’s report is
beyond the scope of our development con-

tract, but it’s nice to know we could re-
spond quickly to such a request if called
upon.

The problem is, where does the in-
formation come from? We could ask the
user to enter it manually each time. This is
more work for our unfortunate friend in
purchasing. In addition to bombarding her
with reorder warnings, we ask her to guess
the date each part will arrive. How would
she go about it? Framis bearings take four
weeks, fernst gaskets take six, and light
bulbs come in overnight. Knowing the na-
ture of the part, she would add its typical
lead time to today’s date, giving a likely ar-
rival date. Such lead time characterizes the
part itself. It is a template datum because it
helps compute a field (arrival date) in the
volatile part-in future event. Hence, we
should add estimated-lead time to the rec-
ord layout of part-item. Similarly, we
should inspect all fields in future-event re-
cords: how will each be produced? Would a
template help?

Notice that we design the template
to help the user, not replace him. The com-
puted date is simply a first guess, offered as
a suggestion. Final responsibility for accu-
racy remains with the user and we must en-
able him to manually overlay the comput-
er’s estimate with his own.

A productive-skepticism warning:
users do not always see a template’s useful-
ness as clearly as they do its threat. A tem-
plate’s goal is to handle the routine that
makes up 80% of any activity, enabling us-
ers to override exceptions. But some con-
fuse importance with ease of automation.
With data such as lead time or price, users
have been known to refuse template de-
faults and insist on having it done by hand:
*“Delivery-date is too important to be en-
trusted to the computer.” Only time and

DECEMBER 15, 1985 67

t




