by Frank Sweet

To refresh your memory, our sample ap-
plication is an imaginary Maintenance
Equipment Spare Parts Inventory System.
MESPIS’s first scope goal is to “Keep track
of the on-hand stock quantity of each item
in our firm’s spare parts warehouse.” So
far, our database design contains only one
record.

PART-NUM
PART-NAME
ON-HAND-STOCK-QTY

Applications that record the past
need past-event records. In the context of
meeting our first goal, what is the single
most vital data field (as opposed to ID field)
in the part-item record? On-hand-stock-
qty, of course. The field is actually named
in the scope statement. With it, we can be-
gin to address the other goals. Without it,
we haven’t a prayer.

The past-event pattern tells us that
when a field is so important that the whole
application hinges on it, an update audit
trail isn’t a luxury; it’s a bare necessity. We
must create a volatile entity (an event) to
record every occasion when the on-hand-
stock-qty was updated.

SERIAL SERIAL
DATE DATE
QTYy Qry
PART- " PART-
™ PART out
EVENT EVENT

Some users might deny that audit-
trail records are needed. The decisive crite-
rion is simple: is the accuracy of the field in
question part of the goal? If it is, we must
include the event record. Failure to do so
could result in the following six-months-
later scenario: the field is vital, one or two
cases are suspected to be wrong, the appli-
cation is challenged, and we are asked to
demonstrate how the questionable values

: were arrived at.

The point is not that past-event rec-
ords make our demonstration easier. They
avoid the challenge altogether. Consider

We continue our exploration of database design in
parts 10 and 11 of this 14-part series, Process-

Driven Data Design.

PAST AND

FUTURE EVENTS

your own experience. How often do you
phone your bank because of a questionable
account balance? How often would you call
if its monthly statement showed only your
current balance and did not list every check
and deposit?

What fields should the past-event
records carry? Data fields and ID fields,
naturally. Data fields include quantity,
date, and description. Quantity (in or out,
as the case may be) is essential since the
records’ purpose. is to justify the balance
carried in the part-item record. Date is also
needed for the same reason.

Description is not crucial since
we’re now dealing with events, not objects.
It’s not forbidden, of course, just not man-
datory. The user might want to write some-
where: “This is when Harry replaced the
steam trap on unit 12 because he backed
the truck into it.” If so, include a descrip-
tion. (Alternatively, since the above sen-
tence tells us the individual withdrawing
the part, the cost center to be charged, and
the reason for the withdrawal, each of these
elements could be codified and made sepa-
rate fields.)

An identifying serial number of
some sort is also needed. Without such a
number, there is no way to tell a program
(or a person) which specific event we are
referring to in any particular case. If some
law of nature decreed that there be a maxi-
mum of one “in” and one “out” for a given
part on any given date, then the date itself
would seem capable of doubling as the re-
cord’s identifier. There are two reasons
why this would be unwise. First, it's unlike-
ly that such a law exists. Second, mixing
meaningful data into identifiers leads to un-
resolvable confusion if those data must
themselves be modified (Harry didn’t take
the part on Thursday after all; it was Fri-
day). Ideally, record keyfields should be
unique, unambiguous, unchanging, and
dataless.

A final thought on our past events:
two different boxes are shown—part-in and
part-out. They might be merged into just
one type of record in physical database de-
sign. The decision will pivot on the similar-
ity of their fields and their relationships to
other records. For now, it's best to keep

them separate. After all, part-comes-in and
part-goes-out are fundamentally different
happenings in the real world.

PART 11: Now, in part 11, let’s in-
FUTURE vestigate a close relative
EVENTS of the past event, the fu-

ture event. Systems that
are meant to manipulate the future (to
make something happen) need future-event
records. Unfortunately, dp historically
grew out of accounting, so most older sys-
tems simply record the past. So far, MESPIS
looks to the past, and our design reflects
this.

But MESPIS has three goals. Is one of
them intended to make something happen?
Consider the second goal: “Produce a re-
port when it is time to reorder a spare part,
based on its stock quantity being too low."”
Evidently, the report is meant to get the
part resupplied; its ultimate goal is to avoid
running out. This is important because it
hints that our system looks to the future as
well as the past. Hence, we turn our atten-
tion to the third database design pattern,
the future event. It tells us that, to ma-
nipulate the future, we need future-event
entities.

Adding these to our design results
in the following diagram. The picture now
shows one involatile object (part) and four
volatile events (in and out, past and future).

The fields in the two new records
will be the same as those in the past events:
date, serial number, quantity, and (option-
ally) description, since the same rationale

DECEMBER 1, 1985 117



