B S

Summary fieids are useful because they enable one

program to do the summarization work for many others.

the diocesan totals. If each were to com-
pute the sum on its own, it would have to
read all the parishes in every diocese to get
the numbers it needs. Each would be more
complex, thereby taking longer to write,
compile, debug, test, and maintain. Each
would run longer.

By using summary fields, only one
program (the one that maintains the low-
est-level record—the parish) does the tim
consuming work. Other obtain
the data right out of the higher-level rec-
ords. This makes them simpler and faster.
It also requires a bit more disk space, but
3350 space rents for about $2 per megabyte
per month and isn’t a serious factor.

Summary fields are risky because
they are redundant. It’s rather like keeping
old balance, debits, credits, and new bal-
ance on the same record (any three are
enough to do the job, all four is overkill).
Being redundant, they can (and most likely
will) become inconsistent. After a year, it is
a safe bet that 10% of the records on file
will carry summary totals that do not
match the sum of their details. The causes
are legion:
® User procedural error. A procedure says
once summaries are computed, users must
not modify details. But no procedure is fol-
lowed perfectly by everyone all the time.

" @ Program bug. A program updates three

parish records, goes to update the diocese
record, and blows away with a data excep-
tion. Depending on how the files are man-
aged, the summary totals may no longer
match the details. .

* Program maintenance. A programmer
enhances an on-line inquiry program, en-
abling the user to update diocese records.
The specs don’t warn that its summary
fields must be protected. They’re put on the
screen unprotected, and users promptly
start changing them. (Specs? What specs?)
®System crash. An on-line program up-
dates a parish record, gets ready to read the
diocese record so it can increment the sum-
mary fields, and CICS crashes.

But all the causes are irrelevant.
The point is that when anything goes
wrong, the diocese records will be bad and
the fact may never be detected.

Again, there is no absolute answer.
If detail records are added or modified on-
line but summary totals are only needed at
the end of the month, we don’t need the
redundant summary ficlds at all. Why force
every update program to read higher-level
records, increment their totals, and rewrite
them whenever a detail changes?

But if detail records are keyed in
batches, while summaries are inquired on-
line, why force every inquiry to read all the
details and add them up on its own when

182 DATAMATION

the batch update could have done it once
and for all?

Our best bet is to decide where our
situation lies, somewhere between these
two extremes. If we feel we need summary
fields, we include them in our design. We
are aware of the risk though, and make sure
our users understand that inconsistencies
will arise and they must find some way of
detecting and correcting them.

SOME Now, in part nine (“The
RECURRING !dentifier and Its Name™)

let’s look into recurring
PATTERNS patterns that appear in
many database designs.

Designing databases can be curious-
ly repetitive work. It’s not only that after
we’ve built a dozen inventory systems the
thirteenth seems somehow familiar. Even
working on an application where we have
no prior experience we may feel a sense of
déja vu. Designs seem to take on their own
lives. Useful ones appear again and again,
heedless of application. Think of examples
we've met: that neat way of handling a par-
tial-name alphabetic search for a client’s
personnel file, reincarnated months later to
handle another’s vendor file. The audit
trails we sketched to track money in an ac-
count are remarkably like those we later
used to keep track of goods in a warehouse.
Some techniques, indeed, are so reliable
and widely useful that we can call them
patterns in database design.

For the next couple of sections, let
me show you five of my favorite patterns.
They range in complexity from the simple
identifier and its name examined today to
the strange, labyrinthine, self-related rec-
ord we’ll meet in part 13 of this series.

Some are so widely applicable to in-
formation storage problems that they apply
even to paper files. Others are limited to
database management systems. What they
have in common is that we’ve encountered
them so often, in so many guises, they now
seem like old friends. We can rely on them
to do the job. Often, they will warn us when
we miss something vital. More important,
they help us listen to our user with produc-
tive skepticism. But more about this later.

The five patterns are
o the identifier and its name,
¢ the past event,

* the future event,
® the template, and
® the self-related record.

To make them tangible, we’ll use
them to design a sample application. Start-
ing with a statement of system scope, we
shall apply each, in turn, to derive a fin-
ished conceptual database design.

Our application is an imaginary

maintenance equipment spare parts inven-
tory system. The first order of business is to
come up with an unpronounceable acro.
nym, and our system is no exception. We'll
call it MESPIS, and its threefold scope is to
* keep track of the on-hand stock quantity
of each item in our firm’s spare parts ware-
house;

¢ produce a report when it is time to re-or-
der a spare part, based on its stock quantity
being too low; and

¢identify, for each part, those pieces of
equipment in which it is used.

Our first pattern is the identifier and
its name. Every entity (everything about
which we’ll store business data) carries
both identification fields and data fields. Ip
fields identify, data fields describe. ID fields

tellourclicnt'ssnﬂ'tswellasourpro-‘

grams which specific occurrence of the en-

tity is at hand. Data fields describe .

attributes or characteristics of the entity.
As we saw in “Objects and Events,”

(sec part three of the series, Sept. 15, p. |
152) entities come in two groups, volatile 3

cvents and involatile objects. The pattern
simply tells us that objects should always
carry at least one field of each type: an enti-

ty identifier (an ID-number or keyfield) and
a name (or description). Without these two
fields, we wouldn’t have a viable entity at 3

all.

Since our system deals with objects 3
(spare parts), we begin by drawing a box ;
labeled “part™ and know that the record

must have an identification number of
some sort and a name.

Of course, since the scope statement spoke
of stock quantity, we include this field as
well

Now and again we’ll run across a
client who affirms that a proposed invola-
tile entity needs no name or description.
We include one nonetheless (productive
skepticism). If we neglect to do so, we'd
probably come back in six months and find
them using address or location or some
other fields to store the information. To
keep the other field usable, we would then
retrofit the record and add description after
all. So, we might as well do it now and get it
over with.

Next time, we'll continue designing
the MESP1s database by examining past and
future events. ®

Frank Sweet is corporate manager of
data acministration for the Charter Co.,
Jacksonville, Fla.

