by Frank Sweet

Bachman diagrams show relationships (ar-
rows) among information entities or rec-
ords (boxes) in conceptual database design.
Now, symmetry seems to demand that real-
world relationships should come in three
flavors:

MANY-TO
-MANY

The idea is so appealing, in fact,
that to say only the one-to-many flavor
really exists seems to imply an irrational
universe. Yet this is the case. Douglas Ad-
ams, author of A4 Hitchhiker's Guide to the
Galaxy, theorizes that if anyone should dis-
cover the purpose of the universe (what it’s
good for), it will instantly vanish and be re-
placed by something even more bizarre and
inexplicable. I believe this has already hap-
pened. In conceptual database design, only
one-to-many relationships actually exist for
long. The other two are simply intermedi-
ate design steps that must be resolved into
one-to-manys.

We looked at the many-to-many re-
lationship last time. We showed that such a
two-headed arrow tells us we are not fin-
ished. It points out that there’s an intersec-
tion record missing which, when identified,
resolves the two-headed arrow into two
one-to-many relationships.

The one-to-one headless arrow tells
us that there are too many boxes present.
Consider the following design modeling a
restaurant chain:

ONETO-ONE = ONE-TO-MANY

Every restaurant is also an organi-
zational unit of the firm. Moreover, each
one is only one such unit. Not all units are
restaurants, of course; there are also offices,
warehouses, districts, and so on. But for ev-
ery unit that is a restaurant, it is only one

We continue our exploration of database design in
parts six and seven of this 14-part series,
Process-Driven Data Design.

HEADLESS

AND OPTIONAL

restaurant. Some units, like districts or re-
gions, may have several restaurants report-
ing to them but these aren’t the same thing
as the restaurants themselves. We first
model the situation with a one-to-one rela-
tionship, and then consider: are retail
stores and organizational units really dif-
ferent entities? No. The terms used are
merely context-dependent names for the
same class of real-world tangible objects.

The general rule is that when we
find a one-to-one relationship between two
boxes, we replace them with just one box.
The headless arrow means that we are real-
ly dealing with one entity. The final criteri-
on, based on normalization, is that if every
data element in both boxes car: be uniquely
and unambiguously determine ’ by the key-
field of either box, then you really just have
one record type.

For example, the four boxes, *“CICS
User,” “Insurance Claimant,” “Credcard
Holder,” and *“Computer Programmer”
are all just different views of “Employee.”
“Inbound Shipment” and *Outbound
Shipment” just mean “Shipment.”

In physical database design, we do
sometimes implement one-to-one relation-
ships in order to conserve core, disk-space,
1/0, or cpu cycles. Consider an employee
record with fields for executive stock op-
tions and bonuses. Since these data apply to
only a few employees, the record would
have much empty space for most person-
nel. Wasted disk space at $2 per megabyte
per month (3350 rental) is not as costly as it
once was, but it’s still irritating. We could
compress the employee record, but that
costs cpu cycles and makes restructuring
more difficult. A cleaner solution is to hang
a smaller record off it, to hold the fields
that apply only to executives. Only an em-
ployee record that needs those fields would
own such a subordinate record and, at
most, it would own just one.

As another example, Ken Thorn, of
Giant Food Inc. in Washington, D.C. asks,
“What's the relationship between ‘states of
the union® and ‘governors of states'? Clear-
ly, they bear a one-to-one relationship with
each other yet they are not the same entity

ARROWS

(one is more organic than the other).”

Part of the problem yields to better
definition: if it’s an American history data-
base, for example, where we store political
biographies, a one-to-many relationship is
revealed. Each state, since its entry into the
Union, has had many governors. If, on the
other hand, we only mean to capture data
about current officeholders, then normal-
ization tells us that they are truly the same
information entity, despite intuition.

But now we're sailing the treacher-
ous shoals between theory and reality. For,
even if our users earnestly promise that all
they'll ever want is current data, experi-
enced database designers would still make
them separate physical records. History-
keeping (audit trail) is eventually required
by almost every application and it would be
easier to add it if the volatile portion (clec-
tions in this case) were separate. That way,
you could add an effective-date field to the
governor record and keep historical occur-
rences alongside the current one.

But these one-to-ones are made to
fit the conceptual design into the limita-
tions of our software, hardware, or plan-
ning ability. In a theoretically perfect
conceptual design, neither the headless ar-
row nor the two-headed arrow would exist.

PART7: Now, as we begin part

SPLITTING seven, let's look into how

we go about splitting a

A BOX box in two when an op-
tional arrow appears.

We've been manipulating data

structure, and operating conceptually on
Bachman diagrams while designing a data-
base. In part five we saw how to derive a
new data entity (a box) with the two-head-
ed arrow rule. Just above, in the headless
arrow discussion, we showed how to elimi-
nate a box by merging two entities into one.
Both rules are reliably objective; like arith-
metic, they always work.

Next, we'll inspect two more ma-
nipulations: splitting entities with optional
arrows and merging those with similar rela-
tionships. These rules are more subjective
than the prior two. In other words, they

NOVEMBER 1, 1985 129

