Ir

=N

by Frank Sweet

Bachman data-structure diagrams consist
of boxes and arrows. The boxes represent
data entities or types of records. The ar-
rows depict relationships between records.
Each arrowhead marks the “many” end of
a relationship. )

Bachman diagrams are useful to de-
signers for two reasons. First, they pack so
much information into a succinct, easily re-
produced form. A few lines sketched on a
blackboard or notepad replace tedious, eas-
ily misunderstood explanations. Also, we
can manipulate the symbols, like the terms
of an equation, to derive a detailed concep-
tual database design from a high-level sum-
mary. Diagram manipulations let us con-
clude things about our design. We can test
it for consistency and examine alternatives
before spending days and dollars physically
building it in our shop’s database manage-
ment system.

The three basic diagram manipula-
tions are these: two-headed arrows produce
intersection entities, headless arrows will
merge entities, and optional arrows will
split entities. We'll cover these rules and
others in the next few issues.

First, though, consider the symbols
themselves. Boxes model data entities, the
things about which we'll store data. They
are important because once implemented,
they become different types of records in
the database. Arrows model interrecord re-
lationships. They are important for three
reasons.

First, they embody referential data
integrity. In other words, a “vendor™ box
pointing to a “purchase order™ box means
that we must not store a new purchase or-
der unless it is associated with a valid ven-
dor. Neither should we erase a vendor as
long as it has purchase orders associated
with it.

Second, arrows show important ac-
cess paths (predefined JOINs, in relational
terms) that the finished application will use
(for example, given a vendor, find its pur-
chase orders). Finally, many database man-
agement systems use disk address pointer
chains or arrays to relate records to one an-

We continue our exploration of database design in
part five of this 14-part series, Process-Driven Data Design.

TWO-HEADED

other. Conceptual relationships are a start-
ing point for defining these physical rela-
tionships.

Here are six sample Bachman dia-
grams. The first three are not valid in a fin-
ished conceptual database design.

No arrowhead. Which of the two is
the “many” end? We'll talk about that next
time.

4
1~

Conceptually meaningless, al-
though this can be implemented in some
database management systems.

This one is conceptually meaningful
but theoretically impossible. This situation
does not occur in real life. We will discuss it
in a2 moment.

The next three, though bizarre, do
make sense.

Quite common actually, a bill-of-
material structure.

Weird but legitimate. I've seen only
one like this. It belongs to a large-city res-
cue squad's mapping database.

ARROW

Also common in real life—each or-
ganizational unit reports to one and only
one other unit, but each may have several
units reporting to it. It is not directly imple-
mentable in most database packages.

Let’s examine the first diagram ma-
nipulation: the two-headed arrow and the
missing intersection. A two-headed arrow
means an entity is missing from our design.
There's a record out there that we must
identify and include before translating con-
ceptual into physical design.

PURCHORD |

The above figure tells us that the re-
lationship between the two records is not
simply one of header detail. Since an ar-
rowhead is the many end of a one-to-many
relationship, twin arrowheads don't tell us
which is the many end. Say we wanted a
part-number catalog master file as well as a
file of purchase orders. Obviously, pur-
chased parts and their purchase orders are
related in some way, but where does the ar-
rowhead go? One PO can include many dif-
ferent parts, putting the arrowhead on the
right. But wait, any one part can be includ-
ed in many different purchase orders. This
means that the arrowhead goes on the left.

Our problem is caused by lack of an
entity. The many-to-many situation indi-
cates that we are missing a record. There is
a box, a thing about which we need to keep
data, that we have not yet identified.

Think about it. The PURCHORD rec-
ord carries data about a purchase order (in-
dependent of what individual items are in
the Po). The PARTNUM record holds a
part’s catalog data (regardless of any Pos
that exist). Where does “*quantity ordered™
g0? Not in PARTNUM, because any one part
could be ordered in different quantities on
many POs. but not in PURCHORD either: a
PO can include different quantities of many

OCTOBER 15, 1985 137




