[&7

- AR X e e s W

@

by Frank Sweet

Database design consists of modeling the
business world. Each vendor record should
reflect the characteristics of real vendors,
and there’s one data element that every
vendor record has: a keyfield or vendor ID
number. After all, that’s the way you tell
them apart. A moment’s thought reveals
that keyfields should be dataless, unchang-
ing, unambiguous, and unique. A handy
way of remembering this is K=DU".

Keyfields should be dataless. “Ven-
dor number?” asks our user. “Well, it
should contain region code, industry type,
size code, purchasing-agent code....”
Why do some users insist on embedding
clusters of data into ID numbers? Few de-
sign issues degenerate so swiftly into ulti-
mata and recriminations between designers
and users. There are explanations as well as
solutions.

But first, examine the phenomenon

itself. It leads to two major problems: the
first is nature’s 90-10 rule, the second is
that data do change.

Nature’s 90-10 rule says that 90%
of whatever occurrences you’re measuring
are produced by 10% of the population. If
you insert classification schemes into key-
fields, you'll run afoul of the 90-10 rule.
For example, consider the Case of the Car-
go Tracking System:

The application kept track of ocean
freighters carrying food products around
the world. Each record represented a ship-
ment with such data items as ship name,
cargo quantity (in tons), and value (in dol-
lars). The record’s four-part keyfield was
designed as “CF126523,” where the first
two bytes indicate the type of cargo from a
table of a few dozen types. (“CF,” by the
way, means “coffee beans.”) The next two
bytes show the port of origin from a table of
seaports, and ‘12" means Santos, Brazil.

s

We continue our exploration of database design in
part four of this 14-part series, Process-Driven Data Design.

KEYFIELD

The third slice of keyfield shows the
shipment’s destination port, from the same
table of seaports; “65” means Jacksonville,
Fla. Finally, there's a two-byte sequence
number. In the example, it means that ship-
ment “CF126523” is the twenty-third ship-
ment on file carrying coffee beans from
Santos to Jacksonville.

The 90-10 rule simply says that
most coffee is shipped from Brazil (or
somewhere in South America) to Jackson-
ville (or somewhere where there’s a roast-
ing plant). Packaged foods, on the other
hand, leave processing plants outbound for
distribution sites.

This yields two consequences. First,
many possible numbers will never be used.
Just as you wouldn’t bring lobsters to
Maine, no one would send coffee beans to
Brazil. Second, and more important, is that
in the normal course of business, hundreds
of shipments carry them from Santos to
Jacksonville.

In other words, though there were
unused gaps in the numbering scheme, the
heavily used sequences (e.g., “CF1265...”)
soon exhausted all possible numbers. The
system had not been up two years before
there were 99 shipment records, most of
only historical interest, from Santos to
Jacksonville. How did we code the hun-
dredth one?

There is no clean solution. The two
answers usually proposed for this problem
are to make the sequence-number portion
of the keyfield longer or to add duplicate
entries to one of the tables. The former idea
soon foundered on the grim reality of
changing the length of a master file’s key-
field. It simply could not be done without
retrofitting the entire application and its as-
sociated administrative procedures. In
short, it would have taken too long. If the
system were to survive, that hundredth
shipment had to be recorded immediately.

DESIGN

We adopted the latter idea. We add-
ed code “co” to the cargo-type table with
the same meaning as *“CF.” This postponed
the day of reckoning for another two years.
It also transformed the system into a main-
tenance nightmare. Think of all those sum-
maries by cargo type that could no longer
be produced by sorting the records.

The 90-10 rule probiem has nothing
to do with the food industry or even with
event tracking. It is most often found in
part-numbering schemes for spare parts in
heavy industries like steel or chemicals, or
for components in manufacturing. It’s in-
credible how many different kinds of nuts
and bolts there are.

2CHOICES, We sec the second pitfall,
BOTH ARE the unc.han_ging keyfield,
WRONG by considering what hap-

pens when a shipment is
diverted. Shipment CR126523 is on its way
when dispatching decides its Florida-
bound cargo is more urgently needed in
Baltimore. But destination-port is part of
the record’s keyfield. When a shipment is
redirected we’re faced with two choices—
both wrong.

If we leave the shipment’s ID num-
ber unchanged, its destination-port code
becomes inaccurate. Not that it is redun-
dant, inconsistent, untimely, or anything
less. It is simply flat-out wrong. Anyone
who uses this information will be misled.
Worse, it’s one of the most important piec-
es of data in the record. Why else did our
user want it in the keyfield in the first
place?

If we change the ID number we lose
the shipment's audit history. Understand,
most data are not in computer files. Ship-
ment numbers are in letters, telephone note
pads, contracts, scrawled on the backs of
envelopes, on countless 3-by-5 file cards,
and in the skulls of users everywhere. If we

OCTOBER 1, 1985 119

