We continue our exploration of database design in part

three of this 14-part series, Process-Driven Data Design.

OBJECTS
AND EVENTS

by Frank Sweet

I left us with a problem last time, “The
Case of the Unreserved Work Orders.” We
were offered values for all three terms in
the equation: POOLTIME X FLOWRATE =
POPULATION. We observed 200 orders
awaiting parts and were informed in inter-
views that 40 new ones were issued each
month and that their average wait time was
10 days. The question was, “What is the
average pooltime?” The answer is five
months, no less.

Our challenge, to estimate the aver-
age wait time, involved deciding whether to
accept the numbers as given or to cross-
check them against one another. The inter-
view-given pooltime, in months (0.3), times
the flowrate (40) is by no means equal to
the observed population (200). The three
figures we collected (flowrate, pooltime,
population) are contradictory. We must de-
cide which one is wrong.

We observed the 200 orders sitting
around—that number cannot be chal-
lenged. The 40 new orders per month
would be easy to verify, thus unlikely to be
misstated. Besides, what motive would
there be for understating it? It’s more likely
to be overstated (“See how hard we
work”"). By elimination, we come to the 10-
day wait time. The number is suspect for
two reasons. First, our verifying it would
seem impossible. Second, it's the sort of
thing higher management puts into goals or
management objectives (‘‘Orders must be
processed within 10 days™). When this hap-
pens, many will unconsciously adopt a con-
venient fiction rather than admit an
unpleasant truth. Discarding the fishy 10-
day datum, we compute average pooltime
to be population (200) divided by flowrate
(40/month), or five months.

Incidentally, in the real case, our
curiosity was so aroused by the five-month
delay in getting jobs onto the floor that we
launched another study just to find the
cause. This eventually led to a vendor qual-
ity/performance history system.

An even more important number in

182 DATAMATION

design is a record’s volatility, the reciprocal
of pooltime. It’s defined as: VOLATILITY =
FLOWRATE -+ POPULATION. Earlier, we
pointed out that volatility is binary and
nearly every type of record falls into one of
two monthly-volatility groups: 1% or
100%. The underlying reason is that we
computerize data about two classes of real-
world phenomena: objects and events.

Objects are tangible things that exist
independent of time. Vendors, customers,
products, employees, warehouses, and
ocean-going freighters are all objects. The
volatility of their records is low—around
1%. Often called “base data” or “master
files,” involatile records store reference in-
formation such as address, location, and
name or description. Objects, in other
words, just sit there and don’t do much.

Events are happenings; each occurs
at a specific instant. Freight deliveries,
shipments, labor charges, receipts, and dis-
bursements are events. Their volatility is
high—around 100%. Called “transaction
data” or “permanent work files,” they keep
track of what’s going on out there. They
hold fields like date (when did it happen),
responsibility (who did it), cause (why),
and the like. Events, in other words, keep
happening.

It’s vital that we recognize which
boxes (records) in our Bachman diagrams
represent involatile objects and which re-
flect volatile events. The distinction is so
important, in fact, that I once proposed us-
ing different data-diagram symbols for the
two—rectangular boxes for objects, and
hexagonal ones for events. Sadly, I cannot
draw a nice-looking hexagon, and the tech-
nique never caught on.

But distinguishing between classes
of entities is not difficult. The computation
is straightforward and, after doing it a few
times, we can recognize them at a glance.
We notice, for instance, that the fields—
shipment-date, order-date, and patient-ad-
mission-date—make sense in that the
words convey clear images. Employee-date,
freighter-date, and vendor-date, on the oth-
er hand, are somehow unsatisfactory and

incomplete. This is because the essence of
an event is that it occurs at a specific in-
stant while an object is not so transient.

SEPERATE There are three reasons
OBJECTS. to distinguish between
EVENTS ! objects and events. First,

we can derive events
from objects but not vice versa. This means
that in constructing a long-range plan—an
overall database architecture—for a pool of
shared data, we begin with the easily identi-
fied object records and then derive events
by Bachman manipulation.

Second, shared files imply standard
data names and, most especially, standard
keyfield formats. We sell both ideas more
easily if we first apply them to involatile
reference data, rather than to less widely
familiar events.

Third, how we physically imple-
ment a design into our database manage-
ment system depends on each record’s
volatility in many ways. Multiple access
paths, backup/recovery procedures, and
migration techniques, all vary with
volatility.

Two warnings: First, don’t confuse
records in another system with objects. Ob-
jects have an external reality while records
model either objects or events. We would
err, for example, in considering a purchase
order record involatile on the grounds that
it models a physical thing—a document.
That document is simply another form of
record which, in turn, models an event—an
agreement to buy something. When in
doubt, compute the volatility. Second,
don’t be overly strict in interpreting “‘tangi-
ble” reality. Nations, sales districts, and
colors aren’t strictly tangible, yet they
would be involatile object entities in a data-
base. Again, compute volatility when in
doubt.

Next time, we'll investigate keyfield
design. ®

Frank Sweet is corporate manager of
data administration for the Charter Co.,
Jacksonville, Fla.



