rth.

1ge
S-

by Frank Sweet

Data flow through files like water in an irri-
gation system. Some pipes carry much vol-
ume, others less. In parts of a database,
records race along in a rush while in other
places they pool into reservoirs with little
perceptible movement. Yet everywhere
they follow the rule,

POOLTIME X FLOWRATE = POPULATION.

In other words, if we mentally iso-
late a section of a system, we'll find that
records follow a simple, steady-state law:
the length of time that records spend in any
section, multiplied by the rate at which rec-
ords flow into the section, is numerically
equal to the number of records currently in
the section.

Database designers must know how
to derive and use the consequences of this
law. It can be applied in all steps of our job,
from initial user interviews to physical file
design. In a moment, we'll illustrate this
with a sample problem, but first let’s exam-
ine what we mean by steady state.

Steady state means that the flowrate
of records entering a section is equal, over
the long pull, to the rate at which they
leave. Say we have a file where 1,000 new
records are added each month. The file is in
a steady state if, over a long period (a year,
for instance), an average of 1,000 records is
also removed from the file each month.
Some records might be removed soon after
they’re added, while others could stay on
file forever. Nevertheless, if 12,000 are add-
ed each year and approximately 12,000 re-
moved, the file fits our definition. With few
exceptions, every system we’ll study is in a
steady state. Look at it this way: if more
records were removed each month than
were added, the file would soon disappear
entirely, thus reaching a steady state with a
population of zero. If the reverse were true,
it would quickly reach the capacity limit of
the medium on which it's stored.

We continue our exploration of database design in
- part two of this 14-part series, Process-Driven Data Design.

DATA FLOW
DYNAMICS

Another aspect of steady state is
that the section we study contains no un-
identified data sinks or data sources. Con-
sider a credit-checking procedure where
credit applications are funneled into a de-
partment for review. If we know that their
total backlog is more or less constant from
year to year, we conclude that, on average,
just as many emerge each month as are sent
in. The only way it could be otherwise
would be if somewhere in the department
applications were being destroyed, never to
be seen again (data sink), or if someone in
the department were producing new appli-
cations internally (data source). Both are
unlikely.

If the number of records-out always
equals the number of records-in, why did
the formula use flowrate into a section,
rather than out of it? Either is valid, but
records-in (new records added) are usually
easier to measure. A typical vendor file,
say, receives new records whenever the
firm first deals with a new supplier. Inac-
tive vendors are commonly purged once a
year. If we're researching the system, it's
often easier to estimate how many new ven-
dors are added each month than to find the
purge rate. And unless the firm is withering
away or in a state of uncontrolled growth,
we can be confident that, over the long
haul, the number of inactive records
purged each year will be close to the num-
ber of new records added.

VALUE The importance of the
OF THE formula is that given any
FORMULA two of the terms, we can

easily compute the third.
Given all three, we can cross-check them
against each other. But enough lecturing.
You now know enough to solve the follow-
ing problem. It was taken from actual expe-
rience and, though the application is
disguised, the numbers are authentic. It can
be solved by using the flowrate formula as

an instrument for applying common sense.
In part three of this series, I'll present the
answer I actually encountered.

The Case of the Unreserved Work
Orders. As part of a materials management
project (MRP, shop loading, etc.), we were
designing a work order reservation system.
New manufacturing jobs, or work orders,
had their component requirements checked
against available inventory before being is-
sued to the shop. The idea was to avoid
starting a job for which parts were missing.
Instead, the job would be held while needed
parts were expedited. The manual system
was working well and our task was simply
to automate it by checking if each order's
parts were in stock, releasing the job to the
shop if they were, otherwise printing an ex-
pedite list. .

It was obvious we’d need a file of
pending work orders—those held awaiting
arrival of needed parts—and to avoid the
order-number wraparound we needed to
know just how long, on average, we could
expect pending orders to stay on file. Inves-
tigating the manual system, we found 200
work orders scattered around in expedit-
ing, awaiting parts arrivals. Although indi-
vidual orders came and went, the total
pending backlog had been constant at
about 200 for as long as users could recall.
Further, we were told that about 40 new
work orders were issued to the floor each
month and that, on average, cach waited
for about 10 days for parts to arrive before
being released.

How long will orders wait on file,
on average, before expediting scares up the
parts for each one?

In part three we'll offer the answer
we found ard explore the world of “Objects
and Events.™ ®

Frank Swes: s corporate manager of
data admir sirzuon for the Charter Co..
Jacksonviie. = 3.

SEPTEMBER 1. 1985 128

-—



