B S —
¢ i s Ss mina aw.

VIHIE 2CLI €L LV ilidARiE d UdLlaudSe aesign aoanie is to

keep it simple, and this implies modularity.

¢ The Two-Headed Arrow—many-to-
many relationships

@ The Headless Arrow—one-to-one re-
lationships

* Optional Arrows—splitting entities

® Hard Sets, Soft Sets, and Summary
Fields—integrity vs. ease of use

® The Identifier and Its Name—the most-
used design pattern

® The Past Event—when audit trail is
mandatory

* The Future Event—productive skep-
ticism

¢ The Template—cookie-cutter records

¢ The Self-Related Record—bill-of-materi-
al structure

* Numbers, Keyfields, and Real Things—a
completion checklist

The hallmarks of a sound database
design are that it is durable and doable. A
durable design survives changes in the busi-
ness environment. Managers, policies,
products, and styles all come and go. But a
database represents millions of dollars’
worth of painstakingly collected data about
our firm and we’d rather it didn’t come and
go with them. A doable design is one that’s
easy to implement. It capitalizes on the one
gift we all share (that we get better at any-
thing each time we repeat it) and doesn’t
penalize our common flaw (we never get
something right the first time).

Durable databases can survive the
very applications that created them. I recall
a shop that has been through two payroll
systems, a now-defunct workmen’s comp
system, and two security systems in the
past six years. Yet their employee database,

which those applications used, has been
chugging away uninterrupted since it was
first installed. At the other extreme lies the
painful case of a design so dependent on
transitory management style that it was
unknowingly wrecked by the stroke of an
executive pen mere weeks after implemen-
tation. Understand, durability is no acci-
dent. We deliberately build it into designs
by modeling underlying business reality
and by making sure the result is shared
among applications and can be expanded
with new data.

REFLECT Modeling reality means
REAL that our data structures
EVENTS reflect real events, real

activities. They must not
simply mimic records in other filing sys-
tems such as forms and documents. Forms
can disappear without a trace, while prod-
ucts, vendors, customers, and employees
cannot. We model reality by letting our de-
signs be determined by the business pro-
cesses they will support. We call this
process-driven data design, and we will re-
turn to how it is done in a moment.
Sharing it among applications
means that different people use the same
database for different purposes. Avoiding
redundancy, DBAs call this, and there are
three reasons why it’s important. First, re-
dundant data implies redundant data upda-
tors, and it’s pointless to have two people
doing the same job. Also, the more users,
the greater the incentive to keep it accurate,
which means the data are more timely and
reliable for everyone. Finally, the more

2

T

84 DATAMATION

widely a database is shared, the more dura]
ble it is. Its users hold it steady despite our;
yearly reorganizational tempests.

Making it expandable so new data
can be added means developing the skills
and tools to add new fields to existing recH
ords, new records to existing files, or newl
files to the database without shutting down
or retrofitting existing applications. Ex.
pandable databases are more durable be.
cause each new application brings new data
needs. Application developers will use the
central database if their needs are easily ac-
commodated. Otherwise, each group could
g0 its own way, and the centrally shared
data pool would be stillborn. *

The most doable database designs
are those that can be brought up faster and
with less effort than comparable flat files.
The worst are disasters where the applica-
tion quickly reaches 90% complete and
stays there for months. There are two se-
crets to making it doable: include only
what we need, and keep it simple.

Data design conceals a treacherous
twist to the dilemma: do we want it right or
do we want it Friday? It’s the urge to in-
clude too much. Designing a vendor file for
a payables system, we conclude that we
need vendor ID number, name, address,
and amount owed. We should stop, but
temptation draws us on. We're designing a
database to be shared by future applica-
tions, we reason. Shouldn’t we find out
what they’ll need and include it t00? The
bait looks tempting—doing a thorough
job— and the risk looks slight—a few days’
extra work. But, to do it, we’d have to iden-
tify every data element and every vendor
attribute that any user could ever want for
any conceivable purpose. In short, it be-
comes an endless undertaking.

The power of database management
systems is that they enable records to be
stretched to include new fields as new ap-
plications arise, and do so without making
us track down and recompile existing pro-;
grams. Consequently, the first way w
make a database design doable is to inclu
only what we need at the time we design it.

The second secret of doability is
keep it simple, and this implies modularity.
There are really only a handful of basic
database design patterns. We use them like?
building blocks, in one application after an-
other. We build designs out of them rather
than deriving each application from
scratch. We'll introduce these patterns is
the ninth installment. We'll start, though.
next time with dataflow dynamics. o3

Frank Sweet is corporate manager of
cata administration for the Charter Co.,
Jacksonville, Fla.



