%

* ¢ Objects and Events—the two populations

“5n] is yes. But to find the why, we will journey

1

The world of database design will be explored, step by
step, in this 14-part series, Process-Driven Data Design.

LESSON ONE-:
DURABLE, DOABLE
DATABASES

by Frank Sweet

Have you ever noticed that there are just
two kinds of data entities in the real world?
Imagine, say, a 10,000-record vendor file
where, on average, 100 new vendors are
added each month and 100 inactive ones
purged. Its monthly volatility (turnover di-
vided by population) is 1%. Now consider
a file of 1,000 purchase orders where 1,000
orders are added each month and the same
number closed. Its volatility would be
100%.

Compute the volatility of the per-
inanent files in your dp shop and you'll un-
cover something strange; there are two

-4 Ve'll manipulate the boxes and arrows of
34 3achman diagrams to derive, split, and

populations out there—two classes of rec-
l'ords. A histogram shows two peaks: one
{ around 1% like our vendor example, the
i other near 100% like the purchase orders.
: Volatility is binary, it seems, and almost ev-
: ery record falls into one group or the other.
f Why is this? Does it apply to every data-
1 base? Does it reveal an important underly-
ing truth about data?

The answer to the last two questions

into the world of database design. We will
1 see that objectively good designs exist, and
| we'll learn to recognize their traits. We'll
review equations in data flow dynamics like
the above, and mnemonics like K=DU’.

i inerge entities. We’ll examine six useful de-
sign patterns we can apply to many appli-
cations. And we'll return with a checklist
that, applied to a design, tells us if it’s ready
to be built.

In all, we’ll cover 14 topics in the

“next few months:

;¢ Durable, Doable Databases—the marks
of a sound design
* Data Flow Dynamics—the mathematics
of data movement

will show you the way to a leaner,

.

Frank Sweet :
meaner, more flexible database. .

of records T R #
¢ Keyfield Design—dataless, unique, un- ’
‘ambiguous, unchanging . : .

- - » AUGUST 15, 1985 83

B S —
¢ i s Ss mina aw.

VIHIE 2CLI €L LV ilidARiE d UdLlaudSe aesign aoanie is to

keep it simple, and this implies modularity.

¢ The Two-Headed Arrow—many-to-
many relationships

@ The Headless Arrow—one-to-one re-
lationships

* Optional Arrows—splitting entities

® Hard Sets, Soft Sets, and Summary
Fields—integrity vs. ease of use

® The Identifier and Its Name—the most-
used design pattern

® The Past Event—when audit trail is
mandatory

* The Future Event—productive skep-
ticism

¢ The Template—cookie-cutter records

¢ The Self-Related Record—bill-of-materi-
al structure

* Numbers, Keyfields, and Real Things—a
completion checklist

The hallmarks of a sound database
design are that it is durable and doable. A
durable design survives changes in the busi-
ness environment. Managers, policies,
products, and styles all come and go. But a
database represents millions of dollars’
worth of painstakingly collected data about
our firm and we’d rather it didn’t come and
go with them. A doable design is one that’s
easy to implement. It capitalizes on the one
gift we all share (that we get better at any-
thing each time we repeat it) and doesn’t
penalize our common flaw (we never get
something right the first time).

Durable databases can survive the
very applications that created them. I recall
a shop that has been through two payroll
systems, a now-defunct workmen’s comp
system, and two security systems in the
past six years. Yet their employee database,

which those applications used, has been
chugging away uninterrupted since it was
first installed. At the other extreme lies the
painful case of a design so dependent on
transitory management style that it was
unknowingly wrecked by the stroke of an
executive pen mere weeks after implemen-
tation. Understand, durability is no acci-
dent. We deliberately build it into designs
by modeling underlying business reality
and by making sure the result is shared
among applications and can be expanded
with new data.

REFLECT Modeling reality means
REAL that our data structures
EVENTS reflect real events, real

activities. They must not
simply mimic records in other filing sys-
tems such as forms and documents. Forms
can disappear without a trace, while prod-
ucts, vendors, customers, and employees
cannot. We model reality by letting our de-
signs be determined by the business pro-
cesses they will support. We call this
process-driven data design, and we will re-
turn to how it is done in a moment.
Sharing it among applications
means that different people use the same
database for different purposes. Avoiding
redundancy, DBAs call this, and there are
three reasons why it’s important. First, re-
dundant data implies redundant data upda-
tors, and it’s pointless to have two people
doing the same job. Also, the more users,
the greater the incentive to keep it accurate,
which means the data are more timely and
reliable for everyone. Finally, the more

2

T

84 DATAMATION

widely a database is shared, the more dura]
ble it is. Its users hold it steady despite our;
yearly reorganizational tempests.

Making it expandable so new data
can be added means developing the skills
and tools to add new fields to existing recH
ords, new records to existing files, or newl
files to the database without shutting down
or retrofitting existing applications. Ex.
pandable databases are more durable be.
cause each new application brings new data
needs. Application developers will use the
central database if their needs are easily ac-
commodated. Otherwise, each group could
g0 its own way, and the centrally shared
data pool would be stillborn. *

The most doable database designs
are those that can be brought up faster and
with less effort than comparable flat files.
The worst are disasters where the applica-
tion quickly reaches 90% complete and
stays there for months. There are two se-
crets to making it doable: include only
what we need, and keep it simple.

Data design conceals a treacherous
twist to the dilemma: do we want it right or
do we want it Friday? It’s the urge to in-
clude too much. Designing a vendor file for
a payables system, we conclude that we
need vendor ID number, name, address,
and amount owed. We should stop, but
temptation draws us on. We're designing a
database to be shared by future applica-
tions, we reason. Shouldn’t we find out
what they’ll need and include it t00? The
bait looks tempting—doing a thorough
job— and the risk looks slight—a few days’
extra work. But, to do it, we’d have to iden-
tify every data element and every vendor
attribute that any user could ever want for
any conceivable purpose. In short, it be-
comes an endless undertaking.

The power of database management
systems is that they enable records to be
stretched to include new fields as new ap-
plications arise, and do so without making
us track down and recompile existing pro-;
grams. Consequently, the first way w
make a database design doable is to inclu
only what we need at the time we design it.

The second secret of doability is
keep it simple, and this implies modularity.
There are really only a handful of basic
database design patterns. We use them like?
building blocks, in one application after an-
other. We build designs out of them rather
than deriving each application from
scratch. We'll introduce these patterns is
the ninth installment. We'll start, though.
next time with dataflow dynamics. o3

Frank Sweet is corporate manager of
cata administration for the Charter Co.,
Jacksonville, Fla.

rth.

1ge
S-

by Frank Sweet

Data flow through files like water in an irri-
gation system. Some pipes carry much vol-
ume, others less. In parts of a database,
records race along in a rush while in other
places they pool into reservoirs with little
perceptible movement. Yet everywhere
they follow the rule,

POOLTIME X FLOWRATE = POPULATION.

In other words, if we mentally iso-
late a section of a system, we'll find that
records follow a simple, steady-state law:
the length of time that records spend in any
section, multiplied by the rate at which rec-
ords flow into the section, is numerically
equal to the number of records currently in
the section.

Database designers must know how
to derive and use the consequences of this
law. It can be applied in all steps of our job,
from initial user interviews to physical file
design. In a moment, we'll illustrate this
with a sample problem, but first let’s exam-
ine what we mean by steady state.

Steady state means that the flowrate
of records entering a section is equal, over
the long pull, to the rate at which they
leave. Say we have a file where 1,000 new
records are added each month. The file is in
a steady state if, over a long period (a year,
for instance), an average of 1,000 records is
also removed from the file each month.
Some records might be removed soon after
they’re added, while others could stay on
file forever. Nevertheless, if 12,000 are add-
ed each year and approximately 12,000 re-
moved, the file fits our definition. With few
exceptions, every system we’ll study is in a
steady state. Look at it this way: if more
records were removed each month than
were added, the file would soon disappear
entirely, thus reaching a steady state with a
population of zero. If the reverse were true,
it would quickly reach the capacity limit of
the medium on which it's stored.

We continue our exploration of database design in
- part two of this 14-part series, Process-Driven Data Design.

DATA FLOW
DYNAMICS

Another aspect of steady state is
that the section we study contains no un-
identified data sinks or data sources. Con-
sider a credit-checking procedure where
credit applications are funneled into a de-
partment for review. If we know that their
total backlog is more or less constant from
year to year, we conclude that, on average,
just as many emerge each month as are sent
in. The only way it could be otherwise
would be if somewhere in the department
applications were being destroyed, never to
be seen again (data sink), or if someone in
the department were producing new appli-
cations internally (data source). Both are
unlikely.

If the number of records-out always
equals the number of records-in, why did
the formula use flowrate into a section,
rather than out of it? Either is valid, but
records-in (new records added) are usually
easier to measure. A typical vendor file,
say, receives new records whenever the
firm first deals with a new supplier. Inac-
tive vendors are commonly purged once a
year. If we're researching the system, it's
often easier to estimate how many new ven-
dors are added each month than to find the
purge rate. And unless the firm is withering
away or in a state of uncontrolled growth,
we can be confident that, over the long
haul, the number of inactive records
purged each year will be close to the num-
ber of new records added.

VALUE The importance of the
OF THE formula is that given any
FORMULA two of the terms, we can

easily compute the third.
Given all three, we can cross-check them
against each other. But enough lecturing.
You now know enough to solve the follow-
ing problem. It was taken from actual expe-
rience and, though the application is
disguised, the numbers are authentic. It can
be solved by using the flowrate formula as

an instrument for applying common sense.
In part three of this series, I'll present the
answer I actually encountered.

The Case of the Unreserved Work
Orders. As part of a materials management
project (MRP, shop loading, etc.), we were
designing a work order reservation system.
New manufacturing jobs, or work orders,
had their component requirements checked
against available inventory before being is-
sued to the shop. The idea was to avoid
starting a job for which parts were missing.
Instead, the job would be held while needed
parts were expedited. The manual system
was working well and our task was simply
to automate it by checking if each order's
parts were in stock, releasing the job to the
shop if they were, otherwise printing an ex-
pedite list. .

It was obvious we’d need a file of
pending work orders—those held awaiting
arrival of needed parts—and to avoid the
order-number wraparound we needed to
know just how long, on average, we could
expect pending orders to stay on file. Inves-
tigating the manual system, we found 200
work orders scattered around in expedit-
ing, awaiting parts arrivals. Although indi-
vidual orders came and went, the total
pending backlog had been constant at
about 200 for as long as users could recall.
Further, we were told that about 40 new
work orders were issued to the floor each
month and that, on average, cach waited
for about 10 days for parts to arrive before
being released.

How long will orders wait on file,
on average, before expediting scares up the
parts for each one?

In part three we'll offer the answer
we found ard explore the world of “Objects
and Events.™ ®

Frank Swes: s corporate manager of
data admir sirzuon for the Charter Co..
Jacksonviie. = 3.

SEPTEMBER 1. 1985 128

-—

We continue our exploration of database design in part

three of this 14-part series, Process-Driven Data Design.

OBJECTS
AND EVENTS

by Frank Sweet

I left us with a problem last time, “The
Case of the Unreserved Work Orders.” We
were offered values for all three terms in
the equation: POOLTIME X FLOWRATE =
POPULATION. We observed 200 orders
awaiting parts and were informed in inter-
views that 40 new ones were issued each
month and that their average wait time was
10 days. The question was, “What is the
average pooltime?” The answer is five
months, no less.

Our challenge, to estimate the aver-
age wait time, involved deciding whether to
accept the numbers as given or to cross-
check them against one another. The inter-
view-given pooltime, in months (0.3), times
the flowrate (40) is by no means equal to
the observed population (200). The three
figures we collected (flowrate, pooltime,
population) are contradictory. We must de-
cide which one is wrong.

We observed the 200 orders sitting
around—that number cannot be chal-
lenged. The 40 new orders per month
would be easy to verify, thus unlikely to be
misstated. Besides, what motive would
there be for understating it? It’s more likely
to be overstated (“See how hard we
work”"). By elimination, we come to the 10-
day wait time. The number is suspect for
two reasons. First, our verifying it would
seem impossible. Second, it's the sort of
thing higher management puts into goals or
management objectives (‘‘Orders must be
processed within 10 days™). When this hap-
pens, many will unconsciously adopt a con-
venient fiction rather than admit an
unpleasant truth. Discarding the fishy 10-
day datum, we compute average pooltime
to be population (200) divided by flowrate
(40/month), or five months.

Incidentally, in the real case, our
curiosity was so aroused by the five-month
delay in getting jobs onto the floor that we
launched another study just to find the
cause. This eventually led to a vendor qual-
ity/performance history system.

An even more important number in

182 DATAMATION

design is a record’s volatility, the reciprocal
of pooltime. It’s defined as: VOLATILITY =
FLOWRATE -+ POPULATION. Earlier, we
pointed out that volatility is binary and
nearly every type of record falls into one of
two monthly-volatility groups: 1% or
100%. The underlying reason is that we
computerize data about two classes of real-
world phenomena: objects and events.

Objects are tangible things that exist
independent of time. Vendors, customers,
products, employees, warehouses, and
ocean-going freighters are all objects. The
volatility of their records is low—around
1%. Often called “base data” or “master
files,” involatile records store reference in-
formation such as address, location, and
name or description. Objects, in other
words, just sit there and don’t do much.

Events are happenings; each occurs
at a specific instant. Freight deliveries,
shipments, labor charges, receipts, and dis-
bursements are events. Their volatility is
high—around 100%. Called “transaction
data” or “permanent work files,” they keep
track of what’s going on out there. They
hold fields like date (when did it happen),
responsibility (who did it), cause (why),
and the like. Events, in other words, keep
happening.

It’s vital that we recognize which
boxes (records) in our Bachman diagrams
represent involatile objects and which re-
flect volatile events. The distinction is so
important, in fact, that I once proposed us-
ing different data-diagram symbols for the
two—rectangular boxes for objects, and
hexagonal ones for events. Sadly, I cannot
draw a nice-looking hexagon, and the tech-
nique never caught on.

But distinguishing between classes
of entities is not difficult. The computation
is straightforward and, after doing it a few
times, we can recognize them at a glance.
We notice, for instance, that the fields—
shipment-date, order-date, and patient-ad-
mission-date—make sense in that the
words convey clear images. Employee-date,
freighter-date, and vendor-date, on the oth-
er hand, are somehow unsatisfactory and

incomplete. This is because the essence of
an event is that it occurs at a specific in-
stant while an object is not so transient.

SEPERATE There are three reasons
OBJECTS. to distinguish between
EVENTS ! objects and events. First,

we can derive events
from objects but not vice versa. This means
that in constructing a long-range plan—an
overall database architecture—for a pool of
shared data, we begin with the easily identi-
fied object records and then derive events
by Bachman manipulation.

Second, shared files imply standard
data names and, most especially, standard
keyfield formats. We sell both ideas more
easily if we first apply them to involatile
reference data, rather than to less widely
familiar events.

Third, how we physically imple-
ment a design into our database manage-
ment system depends on each record’s
volatility in many ways. Multiple access
paths, backup/recovery procedures, and
migration techniques, all vary with
volatility.

Two warnings: First, don’t confuse
records in another system with objects. Ob-
jects have an external reality while records
model either objects or events. We would
err, for example, in considering a purchase
order record involatile on the grounds that
it models a physical thing—a document.
That document is simply another form of
record which, in turn, models an event—an
agreement to buy something. When in
doubt, compute the volatility. Second,
don’t be overly strict in interpreting “‘tangi-
ble” reality. Nations, sales districts, and
colors aren’t strictly tangible, yet they
would be involatile object entities in a data-
base. Again, compute volatility when in
doubt.

Next time, we'll investigate keyfield
design. ®

Frank Sweet is corporate manager of
data administration for the Charter Co.,
Jacksonville, Fla.

[&7

- AR X e e s W

@

by Frank Sweet

Database design consists of modeling the
business world. Each vendor record should
reflect the characteristics of real vendors,
and there’s one data element that every
vendor record has: a keyfield or vendor ID
number. After all, that’s the way you tell
them apart. A moment’s thought reveals
that keyfields should be dataless, unchang-
ing, unambiguous, and unique. A handy
way of remembering this is K=DU".

Keyfields should be dataless. “Ven-
dor number?” asks our user. “Well, it
should contain region code, industry type,
size code, purchasing-agent code....”
Why do some users insist on embedding
clusters of data into ID numbers? Few de-
sign issues degenerate so swiftly into ulti-
mata and recriminations between designers
and users. There are explanations as well as
solutions.

But first, examine the phenomenon

itself. It leads to two major problems: the
first is nature’s 90-10 rule, the second is
that data do change.

Nature’s 90-10 rule says that 90%
of whatever occurrences you’re measuring
are produced by 10% of the population. If
you insert classification schemes into key-
fields, you'll run afoul of the 90-10 rule.
For example, consider the Case of the Car-
go Tracking System:

The application kept track of ocean
freighters carrying food products around
the world. Each record represented a ship-
ment with such data items as ship name,
cargo quantity (in tons), and value (in dol-
lars). The record’s four-part keyfield was
designed as “CF126523,” where the first
two bytes indicate the type of cargo from a
table of a few dozen types. (“CF,” by the
way, means “coffee beans.”) The next two
bytes show the port of origin from a table of
seaports, and ‘12" means Santos, Brazil.

s

We continue our exploration of database design in
part four of this 14-part series, Process-Driven Data Design.

KEYFIELD

The third slice of keyfield shows the
shipment’s destination port, from the same
table of seaports; “65” means Jacksonville,
Fla. Finally, there's a two-byte sequence
number. In the example, it means that ship-
ment “CF126523” is the twenty-third ship-
ment on file carrying coffee beans from
Santos to Jacksonville.

The 90-10 rule simply says that
most coffee is shipped from Brazil (or
somewhere in South America) to Jackson-
ville (or somewhere where there’s a roast-
ing plant). Packaged foods, on the other
hand, leave processing plants outbound for
distribution sites.

This yields two consequences. First,
many possible numbers will never be used.
Just as you wouldn’t bring lobsters to
Maine, no one would send coffee beans to
Brazil. Second, and more important, is that
in the normal course of business, hundreds
of shipments carry them from Santos to
Jacksonville.

In other words, though there were
unused gaps in the numbering scheme, the
heavily used sequences (e.g., “CF1265...”)
soon exhausted all possible numbers. The
system had not been up two years before
there were 99 shipment records, most of
only historical interest, from Santos to
Jacksonville. How did we code the hun-
dredth one?

There is no clean solution. The two
answers usually proposed for this problem
are to make the sequence-number portion
of the keyfield longer or to add duplicate
entries to one of the tables. The former idea
soon foundered on the grim reality of
changing the length of a master file’s key-
field. It simply could not be done without
retrofitting the entire application and its as-
sociated administrative procedures. In
short, it would have taken too long. If the
system were to survive, that hundredth
shipment had to be recorded immediately.

DESIGN

We adopted the latter idea. We add-
ed code “co” to the cargo-type table with
the same meaning as *“CF.” This postponed
the day of reckoning for another two years.
It also transformed the system into a main-
tenance nightmare. Think of all those sum-
maries by cargo type that could no longer
be produced by sorting the records.

The 90-10 rule probiem has nothing
to do with the food industry or even with
event tracking. It is most often found in
part-numbering schemes for spare parts in
heavy industries like steel or chemicals, or
for components in manufacturing. It’s in-
credible how many different kinds of nuts
and bolts there are.

2CHOICES, We sec the second pitfall,
BOTH ARE the unc.han_ging keyfield,
WRONG by considering what hap-

pens when a shipment is
diverted. Shipment CR126523 is on its way
when dispatching decides its Florida-
bound cargo is more urgently needed in
Baltimore. But destination-port is part of
the record’s keyfield. When a shipment is
redirected we’re faced with two choices—
both wrong.

If we leave the shipment’s ID num-
ber unchanged, its destination-port code
becomes inaccurate. Not that it is redun-
dant, inconsistent, untimely, or anything
less. It is simply flat-out wrong. Anyone
who uses this information will be misled.
Worse, it’s one of the most important piec-
es of data in the record. Why else did our
user want it in the keyfield in the first
place?

If we change the ID number we lose
the shipment's audit history. Understand,
most data are not in computer files. Ship-
ment numbers are in letters, telephone note
pads, contracts, scrawled on the backs of
envelopes, on countless 3-by-5 file cards,
and in the skulls of users everywhere. If we

OCTOBER 1, 1985 119

B e T

T RY SR ey e

ey,

Ideally, a record’s keyfield should be little more than
ameaningless serial number.

change ID numbers on file, the lion’s share
of our records (the noncomputerized part)
will be wrong.

Visualize the consequences by imag-
ining a user who’s been monitoring a ship’s
progress across the ocean. One day, inquir-
ing about it with the old ID number, she’s
told that no such shipment exists. Put your-
self in her shoes: she knows it was out there
yesterday, and she knows it didn’t arrive
anywhere today. Have you ever wondered
how that business about the Bermuda Tri-
angle got started? Now you know.

Notice, by the way, that if we bring
up this issue during design, the user will
inevitably say, “Oh, but those data [what-
ever they are] will never change!” Now, if
you believe this, get in touch with me—I
have a Caribbean island I’d like to sell you.

The solution is to keep data out of
the keyfield. Fields in database records
come in two flavors: identification and de-
scription. ID numbers identify; data fields
carry data. The keyfield identifies the entity
that the record models (a shipment), while
all the other fields describe its attributes.
Put origin, destination, cargo, etc., in the
body of the record. If users want output
sorted by these fields, do it. If they want to
retrieve on-line using them, let them. But

keep them out of the keyfield. Ideally, a
record’s keyfield should be little more than
a meaningless serial number.

THEY Why do some users insist
DON'T on embedding data into
T:UNST us keyfields? It’s because

they don’t trust us. Re-
member your last payables system? The
vendor master was up and used by hun-
dreds of programs when the user wanted to
add *‘vendor industry type” to it. Since the
record’s filler had been consumed years be-
fore, you realized you'd have to make the
record longer. To do this, you’d have had
to track down, modify, and recompile all
those undocumented programs. So you told
him that it would take six months and cost
tens of thousands of dollars. He withdrew
the service request, but he still needed the
data, so he simply assigned blocks of ID

numbers to the different industry types. As .

the years went by, he got into the habit of
structuring ID numbers with data and has
never stopped.

The solution centers on our ability
to react quickly to the changing business
environment, adding new items that can be
used as secondary access keys as needed.
With today’s tools, we can provide this lev-

““Give him the boardroom look."

120 DATAMATION

el of service. But modern tools have their
own drawbacks. Each keyfield, besides be-
ing dataless and unchanging, should be un-
ambiguous. In other words, you should not
have different real world entities (two em-
ployees, for example) on file with the same
ID number.

The problem emerges when we mis-
apply technology. Older data access meth-
ods (ISAM, VSAM) made it difficult or
impossible to write multiple direct-access
records with the same key. Today’s data-
base packages allow it, but it’s still unwise.

One way the problem arises is
through shortsighted choice of ID number.
Case history: the Personnel File. Everyone
agreed to use social security number as em-
ployee ID number in the new system. The
application was installed and turned over
to the client before someone asked what to
do about Brazilian employees (they're the
ones who ship all that coffee). Brazil is a
sovereign nation and its citizens aren’t is-
sued U.S. social security numbers. The pro-
posed solution was to invent a number
(999-99-9999) and use it for every Brazil-
ian. The user’s question was, “You mean
the database won’t let me have two employ-
ees with the same ID number?” Our too-
truthful answer was that the package
would, in fact, allow such an aberration.
Needless to say, the file is now a bit tricky
to update. It also produces interesting tele-
phone conversations between personnel
managers: “Not that 999-99-9999, Harry,
the other 999-99-9999 (accompanied by a
great deal of arm waving).

Finally, keyfields should be unique.
You shouldn’t have two records (with dif-
ferent ID numbers) for the same vendor.
The problem arises when each of two dif-
ferent user organizations wants total
authority over the same file. They compro-
mise by splitting the range of possible D
numbers between them. Each maintains
the records within his or her range of 1D
numbers. But since nobody coordinates
new venJ(;r numbering with anyone else,
common vendors get two numbers. The re-
sults are interesting but not very safe. Sev-
eral years ago, my then-employer got stuck
with a $150,000 bad debt from a deadbeat
corporation. The offender’s record was im-
mediately tagged as ‘*‘NO CREDIT-BAD

RISK” by our credit department. Three :

weeks later, they stuck us again for
$200,000. Same outfit, different corporate
ID.

Next time, we'll examine *“‘The
Two-Headed Arrow.” C]

Frank Sweet is corporate manager of
data administration for the Charter Co.,
Jacksonville, Fla.

AT A~ A

Ir

=N

by Frank Sweet

Bachman data-structure diagrams consist
of boxes and arrows. The boxes represent
data entities or types of records. The ar-
rows depict relationships between records.
Each arrowhead marks the “many” end of
a relationship.)

Bachman diagrams are useful to de-
signers for two reasons. First, they pack so
much information into a succinct, easily re-
produced form. A few lines sketched on a
blackboard or notepad replace tedious, eas-
ily misunderstood explanations. Also, we
can manipulate the symbols, like the terms
of an equation, to derive a detailed concep-
tual database design from a high-level sum-
mary. Diagram manipulations let us con-
clude things about our design. We can test
it for consistency and examine alternatives
before spending days and dollars physically
building it in our shop’s database manage-
ment system.

The three basic diagram manipula-
tions are these: two-headed arrows produce
intersection entities, headless arrows will
merge entities, and optional arrows will
split entities. We'll cover these rules and
others in the next few issues.

First, though, consider the symbols
themselves. Boxes model data entities, the
things about which we'll store data. They
are important because once implemented,
they become different types of records in
the database. Arrows model interrecord re-
lationships. They are important for three
reasons.

First, they embody referential data
integrity. In other words, a “vendor™ box
pointing to a “purchase order™ box means
that we must not store a new purchase or-
der unless it is associated with a valid ven-
dor. Neither should we erase a vendor as
long as it has purchase orders associated
with it.

Second, arrows show important ac-
cess paths (predefined JOINs, in relational
terms) that the finished application will use
(for example, given a vendor, find its pur-
chase orders). Finally, many database man-
agement systems use disk address pointer
chains or arrays to relate records to one an-

We continue our exploration of database design in
part five of this 14-part series, Process-Driven Data Design.

TWO-HEADED

other. Conceptual relationships are a start-
ing point for defining these physical rela-
tionships.

Here are six sample Bachman dia-
grams. The first three are not valid in a fin-
ished conceptual database design.

No arrowhead. Which of the two is
the “many” end? We'll talk about that next
time.

4
1~

Conceptually meaningless, al-
though this can be implemented in some
database management systems.

This one is conceptually meaningful
but theoretically impossible. This situation
does not occur in real life. We will discuss it
in a2 moment.

The next three, though bizarre, do
make sense.

Quite common actually, a bill-of-
material structure.

Weird but legitimate. I've seen only
one like this. It belongs to a large-city res-
cue squad's mapping database.

ARROW

Also common in real life—each or-
ganizational unit reports to one and only
one other unit, but each may have several
units reporting to it. It is not directly imple-
mentable in most database packages.

Let’s examine the first diagram ma-
nipulation: the two-headed arrow and the
missing intersection. A two-headed arrow
means an entity is missing from our design.
There's a record out there that we must
identify and include before translating con-
ceptual into physical design.

PURCHORD |

The above figure tells us that the re-
lationship between the two records is not
simply one of header detail. Since an ar-
rowhead is the many end of a one-to-many
relationship, twin arrowheads don't tell us
which is the many end. Say we wanted a
part-number catalog master file as well as a
file of purchase orders. Obviously, pur-
chased parts and their purchase orders are
related in some way, but where does the ar-
rowhead go? One PO can include many dif-
ferent parts, putting the arrowhead on the
right. But wait, any one part can be includ-
ed in many different purchase orders. This
means that the arrowhead goes on the left.

Our problem is caused by lack of an
entity. The many-to-many situation indi-
cates that we are missing a record. There is
a box, a thing about which we need to keep
data, that we have not yet identified.

Think about it. The PURCHORD rec-
ord carries data about a purchase order (in-
dependent of what individual items are in
the Po). The PARTNUM record holds a
part’s catalog data (regardless of any Pos
that exist). Where does “*quantity ordered™
g0? Not in PARTNUM, because any one part
could be ordered in different quantities on
many POs. but not in PURCHORD either: a
PO can include different quantities of many

OCTOBER 15, 1985 137

-

AR i e e i 7

R R .

> = e

TrE T e

e te e L

Conceptual relationships are a starting point for
defining physical relationships.

parts. We are missing the record for a pur-
chase order’s line item. Therefore, the dia-
gram would look something like this:

LINE ITEM ¥ PARTNUM

Each purchase order may include
many line items, but each line item is on
only one po. Similarly, a part number can
be on many line items (in different POs), but
each line item is for only one part number.

In short, a two-headed arrow is

meaningful because it indicates a many-to- .

many relationship. but it is a symptom that
there’s an entity missing. A hidden record
exits which, when found. forms the inter-
section of the two records already identi-
fied. When you find a many-to-many situ-
ation in file design, feel free to tag it with
arrows at each end. Remember, though, it
means we are not finished. Find the missing
intersection record. break the arrow in two,
insert the intersection, reverse the broken
pieces of arrow, and the two-headed rela-
tionship will vanish.

One last thought: whenever a two-
headed arrow is replaced with a new inter-
section entity, review the other relation-
ships in which the original parent entities
were involved. Look at each arrow pointing
toward the parent boxes and consider its
meaning. You may find it is more appropri-
ately drawn pointing to the newly formed
intersection box than to the original parent
box. The relationship still carries the same
meaning, but moving it to point to the new
box makes the diagram more precise.

Each inspection department can be
involved with many purchase orders. The
fact that their involvement (*inspection
date,” “quantity rejected,” etc.) is at the
level of individual line items can be re-
vealed in three steps.

Start by identifying the many-to-
many relationship.

INSPECTION
DEPARTMENT |y

Identify and draw the intersection
entity.

i prae Wby

INSPECTION
DEPARTMENT

&
N

23

PURCHORD Il LINE ITEM i

PARTNUM

Reconsider the relationship between .
inspection department and purchase order.

INSPECTION
DEPARTMENT

Next time, we'll review the second
basic manipulation, merging entities with
the headless arrow. ®

PARTNUM

PURCHORD

Frank Sweet is corporate manager of
data acministration for the Charter Co.,
Jacksonville, Fla.

T0: Laurie Schnepf, Research Directo

875 Third Ave., New York, NY 10022.

Please send me copies of:

——the 1984 DATAMATION Salary Survey, at $100 each.
——the 1984 DATAMATION Budget Survey, at $100 each.

Please send the material to:

Your name

r, Technical Publishing

- maveﬂgedp'mdg of
. memmbeneﬁt
. memsca,eme

o the annual e
or location?

Title

Company name
Address

I
l
|
l
I
| Acheckis enclosed for $.
I
|
I
|
I

' City, State, Zip

138 A TAMATON

I ing? o

e i s

plans?

by industry .
mmo'er me fa’ yw'

DATAMATION research reports have
the answers. We regularly survey our
183.000 readers around the world about
their operations, and detailed statistical
reports of these studies are now available.

The 1984 DATAMATION Salary Survey,
including 160 pages of tables covering
43 dp job categories in 18 geographic
areas and 11 different industry catego-
ries. is available for $100. The 1984
DATAMATION Budget Survey report
and executive summary, including 261
pages of tables cross tabulated by 11
industry categories and 16 line items of
the typical DP budget, is only $100.

For further information contact

Laurie Schnepf, director of research,
Technical Publishing Co., 875 Third Ave.,
New York. NY 10022.

and geographic area?

by Frank Sweet

Bachman diagrams show relationships (ar-
rows) among information entities or rec-
ords (boxes) in conceptual database design.
Now, symmetry seems to demand that real-
world relationships should come in three
flavors:

MANY-TO
-MANY

The idea is so appealing, in fact,
that to say only the one-to-many flavor
really exists seems to imply an irrational
universe. Yet this is the case. Douglas Ad-
ams, author of A4 Hitchhiker's Guide to the
Galaxy, theorizes that if anyone should dis-
cover the purpose of the universe (what it’s
good for), it will instantly vanish and be re-
placed by something even more bizarre and
inexplicable. I believe this has already hap-
pened. In conceptual database design, only
one-to-many relationships actually exist for
long. The other two are simply intermedi-
ate design steps that must be resolved into
one-to-manys.

We looked at the many-to-many re-
lationship last time. We showed that such a
two-headed arrow tells us we are not fin-
ished. It points out that there’s an intersec-
tion record missing which, when identified,
resolves the two-headed arrow into two
one-to-many relationships.

The one-to-one headless arrow tells
us that there are too many boxes present.
Consider the following design modeling a
restaurant chain:

ONETO-ONE = ONE-TO-MANY

Every restaurant is also an organi-
zational unit of the firm. Moreover, each
one is only one such unit. Not all units are
restaurants, of course; there are also offices,
warehouses, districts, and so on. But for ev-
ery unit that is a restaurant, it is only one

We continue our exploration of database design in
parts six and seven of this 14-part series,
Process-Driven Data Design.

HEADLESS

AND OPTIONAL

restaurant. Some units, like districts or re-
gions, may have several restaurants report-
ing to them but these aren’t the same thing
as the restaurants themselves. We first
model the situation with a one-to-one rela-
tionship, and then consider: are retail
stores and organizational units really dif-
ferent entities? No. The terms used are
merely context-dependent names for the
same class of real-world tangible objects.

The general rule is that when we
find a one-to-one relationship between two
boxes, we replace them with just one box.
The headless arrow means that we are real-
ly dealing with one entity. The final criteri-
on, based on normalization, is that if every
data element in both boxes car: be uniquely
and unambiguously determine ’ by the key-
field of either box, then you really just have
one record type.

For example, the four boxes, *“CICS
User,” “Insurance Claimant,” “Credcard
Holder,” and *“Computer Programmer”
are all just different views of “Employee.”
“Inbound Shipment” and *Outbound
Shipment” just mean “Shipment.”

In physical database design, we do
sometimes implement one-to-one relation-
ships in order to conserve core, disk-space,
1/0, or cpu cycles. Consider an employee
record with fields for executive stock op-
tions and bonuses. Since these data apply to
only a few employees, the record would
have much empty space for most person-
nel. Wasted disk space at $2 per megabyte
per month (3350 rental) is not as costly as it
once was, but it’s still irritating. We could
compress the employee record, but that
costs cpu cycles and makes restructuring
more difficult. A cleaner solution is to hang
a smaller record off it, to hold the fields
that apply only to executives. Only an em-
ployee record that needs those fields would
own such a subordinate record and, at
most, it would own just one.

As another example, Ken Thorn, of
Giant Food Inc. in Washington, D.C. asks,
“What's the relationship between ‘states of
the union® and ‘governors of states'? Clear-
ly, they bear a one-to-one relationship with
each other yet they are not the same entity

ARROWS

(one is more organic than the other).”

Part of the problem yields to better
definition: if it’s an American history data-
base, for example, where we store political
biographies, a one-to-many relationship is
revealed. Each state, since its entry into the
Union, has had many governors. If, on the
other hand, we only mean to capture data
about current officeholders, then normal-
ization tells us that they are truly the same
information entity, despite intuition.

But now we're sailing the treacher-
ous shoals between theory and reality. For,
even if our users earnestly promise that all
they'll ever want is current data, experi-
enced database designers would still make
them separate physical records. History-
keeping (audit trail) is eventually required
by almost every application and it would be
easier to add it if the volatile portion (clec-
tions in this case) were separate. That way,
you could add an effective-date field to the
governor record and keep historical occur-
rences alongside the current one.

But these one-to-ones are made to
fit the conceptual design into the limita-
tions of our software, hardware, or plan-
ning ability. In a theoretically perfect
conceptual design, neither the headless ar-
row nor the two-headed arrow would exist.

PART7: Now, as we begin part

SPLITTING seven, let's look into how

we go about splitting a

A BOX box in two when an op-
tional arrow appears.

We've been manipulating data

structure, and operating conceptually on
Bachman diagrams while designing a data-
base. In part five we saw how to derive a
new data entity (a box) with the two-head-
ed arrow rule. Just above, in the headless
arrow discussion, we showed how to elimi-
nate a box by merging two entities into one.
Both rules are reliably objective; like arith-
metic, they always work.

Next, we'll inspect two more ma-
nipulations: splitting entities with optional
arrows and merging those with similar rela-
tionships. These rules are more subjective
than the prior two. In other words, they

NOVEMBER 1, 1985 129

e e ey

We consider splitting entities with optional arrows
and merging those with similar relationships.

indicate solutions that are likely, but not
absolutely certain. They warn us to investi-
gate further.

Consider the following database de-
sign for a pipe-tobacco wholesaler. Cut to-
bacco is stored in warchouses and
distributed in trucks.

SRR, EH) \ RN

The location/blend record tells how
many pounds of one tobacco blend there
are at a specific warehouse. If there are 20
warchouses and 50 blends in all, we could
have up to 1,000 occurrences of this record
(perhaps not every blend will be stored at
each location). Any blend may be shipped
or received many times. Similarly, each
truck may be involved in many movements.
But, by definition, each movement repre-
sents an occasion where a single location’s
inventory of a blend was either increment-
ed because tobacco arrived or decremented
because some was sent off. Also, each
movement involves only one vehicle.

The situation seems straightfor-
ward. The fields in the location/blend rec-
ord include location number, blend
number, inventory balance, and the like.
Truck record holds vehicle number, cargo
capacity, miles-since-maintenance, etc.
And movement contains date, quantity
shipped, and an in-or-out flag. But doesn’t
the truck-to-movement arrow mean each
movement must involve a truck?

Think about transferring tobacco
within a location. Many pipe tobaccos are
produced by blending others—that’s why
they're called blends. The process is one of
simply shoveling a measured amount from
one hopper to another and, though it cer-
tainly affects the inventory balances, no ve-
hicle is involved. The truck-movement
relationship is then optional in some sense.
Only one truck is involved in any ship-
ments that go by truck, but some shipments
do not involve trucks at all.

The optional arrow is a warning
that the movement box, in an information
modeling sense, could represent two funda-
mentally different entities. Redrawing it as
two boxes, we have:

User

Now there’s a data formaton

design methodolo-
gy for structured
analysis that takes
advantage of the best of
the data-oriented sys-
tems design techniques.

Logical Data Design for Structured \’*®
Analysis, a new five-day seminar from
Ken Orr & Associates, Inc., will teach
you how to logically develop a fully normalized data
base without the frustrations of classic normalization.

“The Missing Link"

System Processing
Modet

P ’\\‘ Logical
{ Logical "y Dala Model
Dsta

e

Working from your system data flows, you will use steps from Ken Orr’s
Data Structured Systems Development (DSSD?) methodology to build
a logical data model that can easily be translated to any physical DBMS
environment. DSSD logical data design makes explicit the implicit link
between structured analysis and detailed design.

Logical Data Design for Structured Analysis — The Missing Link.
dan 13-17 Atlanta Aug. 25-29 Chicago
Mar 24-28 Portland Nov. 10-14 Kansas City
May 5.9 Washington

Call toll-tree for more mformal.'ron' 800,255'2459

1725 Gage Blvd.,
Topeka, Ks. 66604

Ken Orr & Associates, Inc.

CIRCLE 64 ON READER CARD

130 DATAMATION

Shipment and transfer tell about dif-
ferent real-world events. As we refine the
design further, their record layouts con-
tinue to diverge until, eventually, we find
the only data common to both are date and
quantity.

Our first indication of their duality
was that optional arrow.

Now look at the arrow between lo-
cation/blend and transfer. We can't say
each transfer is associated with only one lo-
cation/blend because the transfer event af-
fects two different balances. It decrements
the inventory balances and increments the
location/blend balance it goes to.

The diagram does not mean that
each transfer is related twice to the same
location/blend, by the way. On the con-
trary, each transfer has two different rela-
tionships with two different location/blend
record occurrences—a “from” relationship
with one and a “t0” with the other.

Merging records with similar rela-
tionships is basically the reverse of the pro-
cess just described. For example:

o =

SHIP OUT

Both intersection records, inbound
shipment and outbound shipment, hold the
same data clements and are related to ev-
erything around them in precisely the same
way. This situation warns us to look at
them more closely and see if they’re not
really modeling the same class of real-
world event.

Next time, we'll look at hard sets,
soft sets, and summary fields. @

Frank Sweet is corporate manager of
data administation for the Charter Co.,
Jacksonville, Fla.

by Frank Sweet

Database design is full of compromises.
Data integrity and ease of use are funda-
mentally at Cross-purposes. We cannot
avoid trading one for the other. The prob-
lem isn’t a software limitation; its roots lie
in the very reasons we collect and store in-
formation. We want it to be right. We want
it to be on time. We can never have both.
Today we'll look at two examples of com-
promise, the difference between mandatory
and optional interrecord relationships—
hard sets vs. soft sets—and the desirability
of summary fields.

Consider the following Bachman
data structure diagram where we may have
any numbser of invoices on file for a vendor,
Y but each invoice must be related to only

one vendor.
m

There are two ways to physically
implement such a relationship between rec-
ords (called a “set” in Codasyl-COBOL) in

st databases. One is where each vendor
d)rd is the starting point of a chain of
disk address pointers. (The vendor record
points to the first of its invoices, which
points to the second, etc.) In the other,
each invoice simply contains jts vendor
number as a data field and pointer chains
are not used.

Both approaches enable a program
to retrieve the vendor record, given an in-
voice. With the first, it would read the in-
voice record and then use the database
management system’s obtain-owner or get-
parent command. Under the second, the
program would still read the invojce first,
but then it would move vendor number
from the invoice record to the vendor rec-
ord’s direct-access key and read it directly.

Both approaches let us extract all
the invoices for 4 given vendor, although
the pointer chains do it more efficiently.

We continue our exploration of database design in
parts eight and nine of this 14-part series,
Process-Driven Data Design.

DATA INTEGRITY

Here, the program would read the vendor
file, then use its chain-following command
(get next within parent or obtain next with-
in set). Without pointer chains, the pro-
gram would simply read every invoice in
the file and selectively process only those
that contain the given vendor number,

Where the efficiency of given-a-ven-
dor-get-the-invoices activities is unimpor-
tant, the major difference between the
approaches is in the strictness of data vali-
dation that the database management sys-
tem can provide. “Hard set” is where we
use the DBMS itself to guarantee data integ-
rity—to ensure that each invoice is related
to a valid vendor. “Soft set™ is where we
build integrity checking into the applica-
tion. Pointer chains enable hard sets.

With a hard set, each invoice must
be connected to a valid vendor. The rule s
simple and strict. Look at four sample
situations:
* Initial oversight. Imagine that a program-
mer fails to follow specifications or the
specs don’t say vendor number must be
checked before storing a new invoice rec-
ord. The DBMS would refuse the command
and return an error code unless a valid ven-
dor had been accessed first.
* Subsequent maintenance. Say postimple-
mentation maintenance requires that users
have the ability to change the vendor with
which an invoice is associated. Again, if the
changed program neglects to check the new
vendor’s validity, the pBms would disallow
the operation.
* Owner deletion. Let's look at it from the
other angle. If a user or program attempts
to erase a vendor record from the file, the
DBMS won’t allow the operation if any in-
voices are attached to the vendor,
* User override. Perhaps the user needs the
ability to put invoices into the system be-
fore assigning them 1o 2 vendor (maybe
identifying the vendor takes several days).
The pBMS will not allow it.

Don’t misunderstand. We aren't
saying that any particular database pack-
age compels this degree of strictness; none

AND THE

IDENTIFIER

does. But they enable it, and we're describ-
ing what happens when we take advantage
of the capability.

DANGER OF With a soft set, the appli-

ORPHANED cation program—not the
INVOICES DBMS—controls data in-

tegrity. Look again at the
sample situations. In the case of initial
oversight, a new invoice could be stored
without a valid vendor number or with no
vendor numbser at all. In subsequent main-
tenance, if the update program moves a
nonvalid vendor number into the invoice
and modifies it, it will remain inaccurate.
Without hard-set integrity, a vendor could
be deleted, leaving dozens of invoices or-
phaned and no longer meaningful. And, if
the user needs to put invoices into the sys-
tem before assigning them vendor numbers,
there’s nothing to prevent it.

Which is best? There is no answer.
The trade-off, as we warned, is between
data integrity and ease of use. Look at it
this way: the power of the hard set is that it
enforces strict referential integrity whether
analysts, programmers, or users want it or
not. That is also the hard set’s weakness.

Summary fields are another area of
compromise. Consider a hierarchical data-
base. Not a hierarchical DBMS—that’s just
another name for IMs/pL1. I mean really
hierarchical. You know, with records for
parishes, dioceses, archdioceses, and so
forth, right on up to the Pope. Each parish
record contains a field, number-of-faithful,
telling how many members it has. Each
bishop's diocesan record holds the same
data element, enumerating total parishio-
ners in the diocese, and so on. These are
evidently redundant and are called “*sum-
mary fields™ because each contains the sum
of the same field in subordinate records.
Summary ficlds are sometimes useful. They
are always risky.

Summary fields are often useful be-
cause they enable one program to do the
tedious summarization work for many oth-
ers. For example, Say many programs need

NOVEMBER 15, 1985 184

B S

Summary fieids are useful because they enable one

program to do the summarization work for many others.

the diocesan totals. If each were to com-
pute the sum on its own, it would have to
read all the parishes in every diocese to get
the numbers it needs. Each would be more
complex, thereby taking longer to write,
compile, debug, test, and maintain. Each
would run longer.

By using summary fields, only one
program (the one that maintains the low-
est-level record—the parish) does the tim
consuming work. Other obtain
the data right out of the higher-level rec-
ords. This makes them simpler and faster.
It also requires a bit more disk space, but
3350 space rents for about $2 per megabyte
per month and isn’t a serious factor.

Summary fields are risky because
they are redundant. It’s rather like keeping
old balance, debits, credits, and new bal-
ance on the same record (any three are
enough to do the job, all four is overkill).
Being redundant, they can (and most likely
will) become inconsistent. After a year, it is
a safe bet that 10% of the records on file
will carry summary totals that do not
match the sum of their details. The causes
are legion:
® User procedural error. A procedure says
once summaries are computed, users must
not modify details. But no procedure is fol-
lowed perfectly by everyone all the time.

" @ Program bug. A program updates three

parish records, goes to update the diocese
record, and blows away with a data excep-
tion. Depending on how the files are man-
aged, the summary totals may no longer
match the details. .

* Program maintenance. A programmer
enhances an on-line inquiry program, en-
abling the user to update diocese records.
The specs don’t warn that its summary
fields must be protected. They’re put on the
screen unprotected, and users promptly
start changing them. (Specs? What specs?)
®System crash. An on-line program up-
dates a parish record, gets ready to read the
diocese record so it can increment the sum-
mary fields, and CICS crashes.

But all the causes are irrelevant.
The point is that when anything goes
wrong, the diocese records will be bad and
the fact may never be detected.

Again, there is no absolute answer.
If detail records are added or modified on-
line but summary totals are only needed at
the end of the month, we don’t need the
redundant summary ficlds at all. Why force
every update program to read higher-level
records, increment their totals, and rewrite
them whenever a detail changes?

But if detail records are keyed in
batches, while summaries are inquired on-
line, why force every inquiry to read all the
details and add them up on its own when

182 DATAMATION

the batch update could have done it once
and for all?

Our best bet is to decide where our
situation lies, somewhere between these
two extremes. If we feel we need summary
fields, we include them in our design. We
are aware of the risk though, and make sure
our users understand that inconsistencies
will arise and they must find some way of
detecting and correcting them.

SOME Now, in part nine (“The
RECURRING !dentifier and Its Name™)

let’s look into recurring
PATTERNS patterns that appear in
many database designs.

Designing databases can be curious-
ly repetitive work. It’s not only that after
we’ve built a dozen inventory systems the
thirteenth seems somehow familiar. Even
working on an application where we have
no prior experience we may feel a sense of
déja vu. Designs seem to take on their own
lives. Useful ones appear again and again,
heedless of application. Think of examples
we've met: that neat way of handling a par-
tial-name alphabetic search for a client’s
personnel file, reincarnated months later to
handle another’s vendor file. The audit
trails we sketched to track money in an ac-
count are remarkably like those we later
used to keep track of goods in a warehouse.
Some techniques, indeed, are so reliable
and widely useful that we can call them
patterns in database design.

For the next couple of sections, let
me show you five of my favorite patterns.
They range in complexity from the simple
identifier and its name examined today to
the strange, labyrinthine, self-related rec-
ord we’ll meet in part 13 of this series.

Some are so widely applicable to in-
formation storage problems that they apply
even to paper files. Others are limited to
database management systems. What they
have in common is that we’ve encountered
them so often, in so many guises, they now
seem like old friends. We can rely on them
to do the job. Often, they will warn us when
we miss something vital. More important,
they help us listen to our user with produc-
tive skepticism. But more about this later.

The five patterns are
o the identifier and its name,
¢ the past event,

* the future event,
® the template, and
® the self-related record.

To make them tangible, we’ll use
them to design a sample application. Start-
ing with a statement of system scope, we
shall apply each, in turn, to derive a fin-
ished conceptual database design.

Our application is an imaginary

maintenance equipment spare parts inven-
tory system. The first order of business is to
come up with an unpronounceable acro.
nym, and our system is no exception. We'll
call it MESPIS, and its threefold scope is to
* keep track of the on-hand stock quantity
of each item in our firm’s spare parts ware-
house;

¢ produce a report when it is time to re-or-
der a spare part, based on its stock quantity
being too low; and

¢identify, for each part, those pieces of
equipment in which it is used.

Our first pattern is the identifier and
its name. Every entity (everything about
which we’ll store business data) carries
both identification fields and data fields. Ip
fields identify, data fields describe. ID fields

tellourclicnt'ssnﬂ'tswellasourpro-‘

grams which specific occurrence of the en-

tity is at hand. Data fields describe .

attributes or characteristics of the entity.
As we saw in “Objects and Events,”

(sec part three of the series, Sept. 15, p. |
152) entities come in two groups, volatile 3

cvents and involatile objects. The pattern
simply tells us that objects should always
carry at least one field of each type: an enti-

ty identifier (an ID-number or keyfield) and
a name (or description). Without these two
fields, we wouldn’t have a viable entity at 3

all.

Since our system deals with objects 3
(spare parts), we begin by drawing a box ;
labeled “part™ and know that the record

must have an identification number of
some sort and a name.

Of course, since the scope statement spoke
of stock quantity, we include this field as
well

Now and again we’ll run across a
client who affirms that a proposed invola-
tile entity needs no name or description.
We include one nonetheless (productive
skepticism). If we neglect to do so, we'd
probably come back in six months and find
them using address or location or some
other fields to store the information. To
keep the other field usable, we would then
retrofit the record and add description after
all. So, we might as well do it now and get it
over with.

Next time, we'll continue designing
the MESP1s database by examining past and
future events. ®

Frank Sweet is corporate manager of
data acministration for the Charter Co.,
Jacksonville, Fla.

by Frank Sweet

To refresh your memory, our sample ap-
plication is an imaginary Maintenance
Equipment Spare Parts Inventory System.
MESPIS’s first scope goal is to “Keep track
of the on-hand stock quantity of each item
in our firm’s spare parts warehouse.” So
far, our database design contains only one
record.

PART-NUM
PART-NAME
ON-HAND-STOCK-QTY

Applications that record the past
need past-event records. In the context of
meeting our first goal, what is the single
most vital data field (as opposed to ID field)
in the part-item record? On-hand-stock-
qty, of course. The field is actually named
in the scope statement. With it, we can be-
gin to address the other goals. Without it,
we haven’t a prayer.

The past-event pattern tells us that
when a field is so important that the whole
application hinges on it, an update audit
trail isn’t a luxury; it’s a bare necessity. We
must create a volatile entity (an event) to
record every occasion when the on-hand-
stock-qty was updated.

SERIAL SERIAL
DATE DATE
QTYy Qry
PART- " PART-
™ PART out
EVENT EVENT

Some users might deny that audit-
trail records are needed. The decisive crite-
rion is simple: is the accuracy of the field in
question part of the goal? If it is, we must
include the event record. Failure to do so
could result in the following six-months-
later scenario: the field is vital, one or two
cases are suspected to be wrong, the appli-
cation is challenged, and we are asked to
demonstrate how the questionable values

: were arrived at.

The point is not that past-event rec-
ords make our demonstration easier. They
avoid the challenge altogether. Consider

We continue our exploration of database design in
parts 10 and 11 of this 14-part series, Process-

Driven Data Design.

PAST AND

FUTURE EVENTS

your own experience. How often do you
phone your bank because of a questionable
account balance? How often would you call
if its monthly statement showed only your
current balance and did not list every check
and deposit?

What fields should the past-event
records carry? Data fields and ID fields,
naturally. Data fields include quantity,
date, and description. Quantity (in or out,
as the case may be) is essential since the
records’ purpose. is to justify the balance
carried in the part-item record. Date is also
needed for the same reason.

Description is not crucial since
we’re now dealing with events, not objects.
It’s not forbidden, of course, just not man-
datory. The user might want to write some-
where: “This is when Harry replaced the
steam trap on unit 12 because he backed
the truck into it.” If so, include a descrip-
tion. (Alternatively, since the above sen-
tence tells us the individual withdrawing
the part, the cost center to be charged, and
the reason for the withdrawal, each of these
elements could be codified and made sepa-
rate fields.)

An identifying serial number of
some sort is also needed. Without such a
number, there is no way to tell a program
(or a person) which specific event we are
referring to in any particular case. If some
law of nature decreed that there be a maxi-
mum of one “in” and one “out” for a given
part on any given date, then the date itself
would seem capable of doubling as the re-
cord’s identifier. There are two reasons
why this would be unwise. First, it's unlike-
ly that such a law exists. Second, mixing
meaningful data into identifiers leads to un-
resolvable confusion if those data must
themselves be modified (Harry didn’t take
the part on Thursday after all; it was Fri-
day). Ideally, record keyfields should be
unique, unambiguous, unchanging, and
dataless.

A final thought on our past events:
two different boxes are shown—part-in and
part-out. They might be merged into just
one type of record in physical database de-
sign. The decision will pivot on the similar-
ity of their fields and their relationships to
other records. For now, it's best to keep

them separate. After all, part-comes-in and
part-goes-out are fundamentally different
happenings in the real world.

PART 11: Now, in part 11, let’s in-
FUTURE vestigate a close relative
EVENTS of the past event, the fu-

ture event. Systems that
are meant to manipulate the future (to
make something happen) need future-event
records. Unfortunately, dp historically
grew out of accounting, so most older sys-
tems simply record the past. So far, MESPIS
looks to the past, and our design reflects
this.

But MESPIS has three goals. Is one of
them intended to make something happen?
Consider the second goal: “Produce a re-
port when it is time to reorder a spare part,
based on its stock quantity being too low."”
Evidently, the report is meant to get the
part resupplied; its ultimate goal is to avoid
running out. This is important because it
hints that our system looks to the future as
well as the past. Hence, we turn our atten-
tion to the third database design pattern,
the future event. It tells us that, to ma-
nipulate the future, we need future-event
entities.

Adding these to our design results
in the following diagram. The picture now
shows one involatile object (part) and four
volatile events (in and out, past and future).

The fields in the two new records
will be the same as those in the past events:
date, serial number, quantity, and (option-
ally) description, since the same rationale

DECEMBER 1, 1985 117

Past-event records don’t make our demonstration
easier; they avoid the challenge altogether.

applies. But why do you look troubled? Ah,
you want to know how on earth we came
up with two more boxes despite having no
idea what we're going to do with them.
Well, I'm reluctant to admit it, but I
haven't the foggiest notion either. I threw
them in because that’s what the future-
event pattern told us to do and, as I men-
tioned, it is an old and trusted friend. Now
that we have them, what say we press on
and figure out their use?

Consider the resupply report.
“Based on its stock quantity being too
low,” the goal said. Evidently, we need a
field, qty-that’s-too-low, in part-item. The
daily resupply report will list all items
whose on-hand-stock-qty is less than its
qty-that’s-too-low.

But a moment’s thought reveals
that once listed, an item will continue to be
listed every day until resupply arrives and
on-hand-stock-qty gets back up to where it
should be. Surely, that can’t be what was
wanted. After it's printed, the report will
undoubtedly go to someone in purchasing
who buys parts to resupply the stockroom.
Assume she immediately orders everything

on the first day’s report. How will she feel
about being harassed every day about those
same items until they arrive? When that
happens, we know it will be futile to plead
that “We met the goals,” for the time-hal-
lowed reply is, “What we really wanted
was . .. "—and that path leads to madness.

Should we then suppress an item’s
appearance on the resupply report if it is
already on order? Well, not exactly. If on-
hand-stock-qty is 13, and qty-that’s-too-
low is 350, and she ordered 12, she deserves
harassing. She should have ordered at least
337. The solution is to report only those
items where on-hand-stock-qty plus the
sum of all the already-ordered-qtys is less
than qty-that’s-too-low.

This leads us to seek a place to put
the quantity and expected arrival date of
every outstanding purchase order. In other
words, we need a record for each expected
part-in event. The future-event pattern
happens to have provided just that.

As a second example, consider our.
supply of framis bearings. This vital
component’s on-hand-stock-qty is 20. Its
qty-that’s-too-low is 15. And its sum of al-

Now there's a data [\
design methodolo-

gy for structured

analysis that takes
advantage of the best of

the data-oriented sys-

tems design techniques.

Logical Data Design for Structured %% /
Analysis, a new five-day seminar from
Ken Orr & Associates, Inc., will teach
you how to logically develop a fully normalized data
base without the frustrations of classic normalization.

"The Missing Link"

System Processing
Mode!

27 TN Logeal
! Logical "\ Data Model
Dala

e

Working from your system data flows, you will use steps from Ken Orr’s
Data Structured Systems Development (DSSD®) methodology to build
a logical data model that can easily be translated to any physical DBMS
environment. DSSD logical data design makes explicit the implicit link
between structured analysis and detailed design.

Logical Data Design for Structured Analysis — The Missing Link.

Jan. 13-17 Atlanta Aug. 25-29 Chicago
Mar. 24-28 Portland Nov. 10-14 Kansas City
May 5-9 Washington

Call toll-free for more information: 800]255'2459

1725 Gage Bivd,,
Topeka, Ks. 66604

Ken Orr & Associates, Inc.

CIRCLE 65 ON READER CARD

118 DATAMATION

ready-ordered-qty is 10. Since 20 plus 10 is 3
not less than 15, we don’t want the thing to :
show up on report. If it does appear we'll 4
soon have more framis bearings (whatever 3
they are) than we need. E

But investigation reveals that Main- j
tenance plans to tear down the paraxylene j
dehydration tower’s regeneration loop and-
replace 50 framis bearings as routine pre-
ventive maintenance. Consequently, they’
need 50 framis bearings next month, and if j
we fail to include the item in the report,
they might not be ordered in time. 3

CASEIS Don'’t think this is an un-
NOT AN usual case to be handled ?
EXCEPTION as an exception. Major :

preventive maintenance
is costly in labor, materials, and (especially) 3
downtime. If we fail to use this information
in selecting items for resupply, our system
will consistently fail to keep in stock the
very parts that are most needed. Listen! .3
Did you hear those voices? They sounded -
like, “We met the goals,” followed by,
“What we really wanted was....”
Taking preventive maintenance int
account, an item should go on report if on:
hand-stock-qty plus already-ordered-qt
minus planned-maint-qty is less than qty- 38
that’s-too-low. In other words, we need a -3
record for expected part-out events. We
happen to have one handy. E:
Call the two scenarios “resupply -
suppression based on ordered quantity” &
and “resupply triggered by planned use.” -
There’s something thought provoking %
about them. Notice three things: they rep-
resent significant requirements, they would
not have been noticed, and intuitive solu- £
tions would have led to blind alleys. They
represent significant requirements because
failure to handle either would have made
MESPIS unacceptable, generating emergen
cy change requests within days after instal
lation. They would not have been noticed
because the craft of design centers around
asking what output the user wants. Yet nei
ther case affects output format or content
in the slightest. Intuitive solutions would
have led to cul-de-sacs because, in both §
cases, the solutions would have buckled un- 3
der postinstallation pressures. Suppressing
every item once it’s been listed leads to
insufficient reorder, and treating routine
preventive maintenance as an exception ig- -
nores the heaviest spare parts use of all.)
Yet the future-event pattern provid- sJ
ed the solution to both, even before the *
problems became visible. @

Frank Sweet is corporate manager of
data administration for the Charter Co.,
Jacksonville, Fla.

B g

@ by Frank Sweet

Future-event records tend to be quite vola-
tile. Their short lives and high flowrate of-
ten call for a cookie-cutter entity to help
stamp them out in assembly-line fashion.

We've been designing a mainte-
nance equipment spare parts inventory sys-
tem called MEsPIS. Its goal is to report
when we must reorder spare parts, based
on their stock balance being too low. So far,
our database looks like this:

Part, the hub of our design, contains
ID-number, description, and on-hand-
stock-qty for each spare part. The two past-
event records document every occasion
when the part’s on-hand balance was up-
dated. The two future events predict arriv-
als of ordered parts and planned usage.
Now, we’ll examine the template, or cook-
ie-cutter, pattern.

Compute the volatility of our part-
out future event. Say 10 maintenance work
orders are done each month. They are
planned 30 days in advance, and each re-
quires about 100 different kinds of spare
parts. Once the parts are actually con-
sumed, their future-event records vanish,
replaced by past events. Hence, some 1,000
new future part-out records are born every
month, each with a life span of about one
month. This 1,000-record population has a

The final three installments of our 14-part series,
Process-Driven Data Design,

THE TEMPLATE

volatility of 100% per month. Work it out,
and you'll see that if maintenance work or-
ders were scheduled three months in ad-
vance, the volatility would be only 33% per
month. In other words, future-event vola-
tility is inversely proportional to the user's
planning horizon; the less farseeing the
forecast, the higher the volatility.

Contrast this with past events. They
appear when parts are consumed and last
for however long we need their audit trail.
For example, keeping records in a system
for six months results in a 17% monthly
volatility. Past-event volatility is inversely
proportional to the user’s need for history;
the more history needed, the lower the
volatility.

Since hindsight is sharper than
prophecy, any application’s future is less
certain than its past. Consequently, future-
event records are, by far, the most volatile
entities in a database. They are produced in
a steady stream, live out their short lives,
and vanish. :

Precisely because they emerge in a
steady stream, loading them with data can
be tiresome. A model or template record
helps. This pattern tells us that when we
have a highly volatile entity, we should
plan how we’ll produce its fields. One way
is to find a record wherein we can house
standard default values for the fields.

Consider lead time. We saw last is-
sue that our future part-in record carries a
date telling when the event (part’s arrival)
is anticipated. Notice that this information
has value even beyond the scope of our sys-
tem. With it, for instance, we could pro-
duce a report comparing the expected
arrival dates of those framis bearings we
spoke of with their planned consumption
dates. True, such an expediter’s report is
beyond the scope of our development con-

tract, but it’s nice to know we could re-
spond quickly to such a request if called
upon.

The problem is, where does the in-
formation come from? We could ask the
user to enter it manually each time. This is
more work for our unfortunate friend in
purchasing. In addition to bombarding her
with reorder warnings, we ask her to guess
the date each part will arrive. How would
she go about it? Framis bearings take four
weeks, fernst gaskets take six, and light
bulbs come in overnight. Knowing the na-
ture of the part, she would add its typical
lead time to today’s date, giving a likely ar-
rival date. Such lead time characterizes the
part itself. It is a template datum because it
helps compute a field (arrival date) in the
volatile part-in future event. Hence, we
should add estimated-lead time to the rec-
ord layout of part-item. Similarly, we
should inspect all fields in future-event re-
cords: how will each be produced? Would a
template help?

Notice that we design the template
to help the user, not replace him. The com-
puted date is simply a first guess, offered as
a suggestion. Final responsibility for accu-
racy remains with the user and we must en-
able him to manually overlay the comput-
er’s estimate with his own.

A productive-skepticism warning:
users do not always see a template’s useful-
ness as clearly as they do its threat. A tem-
plate’s goal is to handle the routine that
makes up 80% of any activity, enabling us-
ers to override exceptions. But some con-
fuse importance with ease of automation.
With data such as lead time or price, users
have been known to refuse template de-
faults and insist on having it done by hand:
*“Delivery-date is too important to be en-
trusted to the computer.” Only time and

DECEMBER 15, 1985 67

t

» A productive-skepticism warning: users do not always

see a template’s usefulness as clearly as they do its threat.

familiarity can alleviate fear. In this situa-
tion, our wisest course is to include tem-
plates in the design but temporarily leave
them out of the processing. Thus, a typical
sequence of change requests reads:
January (system newly installed):

“Delivery dates must be entered by hand.

They are too important to be left to the
computer,”

April: “We need a list of standard
lead times we can refer to (while manually
computing and entering all those delivery
dates).”

July: “The resupply report should
automatically compute each order’s esti-
mated delivery date. But this must not gO
directly into the database. Instead, we shall
transcribe the dates from report to data-
base, correcting each as needed.”

October: “Computed delivery dates
should go automatically into the database.

‘A separate Executive Review Report must

be provided, however. It should list each
day’s computed delivery dates so we can
carefully review them and correct those in
error.”

January: “Executive Review Re-
port? Never heard of it. Oh yes, now I re-
member—that’s the one Joe binds and files.
Nobody knows what it’s for.”

THE SELF- In previous issues we ad-
RELATED dressed two of the three
RECORD goals in the scope state-

ment for a maintenance
equipment spare parts inventory system.
We’ve determined that the hub of our data-
base is a part-item record with one occur-
rence for each different kind of part we
stock. The record holds the part’s ID num-
ber, description, on-hand quantity, reorder
point, and delivery lead time.
Now, in part 13, we examine the
third goal, that is, to “identify, for each
art, those pieces of equipment in which it
1s used.” The statement also implies the

converse: to identify, for each piece of
equipment, the spare parts it uses.

One approach is to add an equip-
ment box, that is, a file containing a record
for each piece of equipment.

The arrow is two-headed because,
while any part (e.g., lubricant) could be
used in many different kinds of equipment,
a given piece of equipment could require
many different types of parts. Recall that a
two-headed arrow warns of a missing inter-
section entity. Replacing it with the inter-
section, we have:

88 DATAMATION

This approach is satisfactory and
might do the job. Its main flaw lies in the
need to discriminate between a spare part
and a piece of equipment. Terminology, it
turns out, often depends on context, and
something that’s called a spare part one
moment might be termed a piece of equip-
ment the next.

Looking at an automobile, we might
consider the entire engine assembly a spare
part. But if we consider the engine as equip-
ment, its ignition cabling group (i.e., coil,
distributor, wires) might be termed a spare.
And, while a faulty ignition system (equip-
ment) is being repaired, a single spark plug
cable (spare part) could be replaced.

If such context-dependent terminol-
ogy were the case in our application, then
treating part-item and equipment as two
different entities would be a mistake. A less
redundant solution is to have just one
entity and call it equipment/item as a
compromise.

The situation regarding this two-
headed arrow is precisely the same as in the
prior one. It means we need an intersection
entity. What makes it confusing is that the
same record lies at both ends of the arrow.
But, though the relationships are harder to
visualize, the same rules apply. The result-
ing pattern is so widely used that it has a
name: bill of material.

IN
NUMBERS, It is dangerously easy to
KEYFIELDS think a conceptual data-
ETC " base is designed when, in

fact, major issues are still
unresolved. The topics keyfields, numbers,
and real things comprise a form of checklist
we find useful in deciding whether we are
really finished. They are not new. We have
mentioned all three before and in part 14
we review our prior discussions.
Keyfields—unique, unambiguous,
unchanging, and dataless. Every entity
should have a keyfield—an identifier that
will tell a person or program which occur-

rence is at hand. Keyfields should be:

* Unique. Each real-world object or event
should be represented by only one occur-
rence of its entity. Don't have two item rec-
ords for the same part.

* Unambiguous. Each occurrence of an en-
tity should model only one real-world ob-
ject or event. Don’t mix light bulbs and
gaskets in a single time record.

* Unchanging. Once they are assigned, an
entity occurrence’s keyfields should remain
unchanged.

¢ Dataless. Keyfields identify. Data fields
describe entity attributes. Don’t mix the
two functions.

Numbers—population and volatili-
ty. An easily avoided error in database de-
sign is to neglect numerical analysis. To an
intern, it may seem that the experienced
surgeon takes risks. To an apprentice, the
seasoned engineer may appear to guess at
pressure vessel stress. Similarly, to novice
database designers, veterans can seem to
shortcut numerical analysis of the data. In
all three cases, appearances are deceptive.

A database designer working on his
or her tenth materials management system
might give the illusion of being unaware
that the bill of material is a complete tem-
plate for supply requisitions, or that main-
tenance work-order volatility is between
50% and 100%. But, like the swan’s effort-
less glide, it is an illusion that conceals
frantic paddling beneath the surface. Be-
fore signing off a conceptual design, we
must know every entity’s population and
volatility. Until we do, our design is
unfinished.

Real things—objects and events.
Application systems analysis usually begins
by studying the existing system, automated
or not. This is the easiest way to find out
what it’s all about. But our database design
would be less than professional if it simply
modeled the existing system. Our goal, af-
ter all, is to model underlying physical
reality.

Every box in our design should rep-
resent an identifiable entity in the real
world. Nonvolatile boxes simulate objects
(or intersection data about pairs of objects).
Volatile boxes model events or happenings
that actually take place. No box should
simply model a record in another data pro-
cessing system, automated or manual.

Concluding a conceptual database
design, we ask ourselves three questions:

Does every box have a unique, un-
ambiguous, unchanging dataless keyfield?

Can we produce reasonable popula-
tion and volatility estimates for every box?

Does every box represent either a
real-world object or a real-world event?

Yes? Then we're done. @®

OEM/SYSTEMS . . . " EDITION

Should vendors buy their software-rich oems?

THE DEC All of these moves by its
STATUS competitors to beef up

their cem programs may
Quo not be a threat to the num-

ber one minicomputer supplier, Digital
Equipment Corp.. a company official says.
In fact, Brian Cranston. DEC’s distributor
program manager. claims it is reassuring to
hear about all the new marketing support pro-
grams other vendors are offering, for DEC has
been making similar offers to select oems
since it pioneered the »uthorized distributor
concept five years vy o stay above the
competition, DEC has just introduced a new
program, in cooperation with a Madison
Avenue advertising agency. to provide oems
with assistance in devising advertising and
sales promotion plans.

“This is something our competitors
arc going to have a hard time copying,’” says
Cranston, “It's very easy to copy a discount
schedule and even go one better—you just
change the number from 30% to 35%. It's a

lot harder to address the kinds of needs that
our promotional planning program will ad-
dress.”™

Harry Beisswenger, president of
Compute-R-Systems, a Plymouth Meeting,
Pa., software house specializing in legal
packages, finds advantages to participating in
the DEC distributor program. in part because it
is mature. An oem/vendor relationship, he
says, "‘is like a marriage; it takes a while to
work out. It takes time for manufacturers to
learn to deal with oems, and DEC has a lot of
experience there.”

“Peter Lowber of the Yankee Group
believes that DEC has a good track record in
providing support to its authorized distribu-
tors. but adds that “*they are expensive.’’

Cranston believes DEC’s discounts are
**pretty competitive.”” The company now of-
fers anywhere from 15% to 37% oft on the
ppP-11 (with an average discount of about
30%), and up to 26% off on the VAX (averag-
ing about 19%).

—

: “Come in. Have a snack. Have a drink. Talk to some people. Leave.”

.oems into

263-6 DATAMATION

Says Lowber: **I think one problem
that DFC has had is that it has pricing strate-
gies that cont® * with its own sales force and
its oems. Somu of DEC’s oems can’t sell the
VAX because the customer base is going jo
buy it from the direct sales force. Then what
happens is that the direct sales force might
discover that 1~ customer needs application
XYZ that has Heen developed by oem ABC. So
it'll go to the oem and offer it the software
sale. The oem is not going to decline a sale,
even though it's not selling the vAX. so it
ends up being more of a software supplier.”™

Vendor interest in converting their
“aure houses, rather than full
system pac- ors, is moving into a second
phase that alarms some industry officials
while it is welcomed by others. Hewlett-
Packard, Lowber points out, recently bought
its second largest oem. **It was probably a
good decision n this case,’” he says. ‘‘be-
cause what HP pot out of it was a bunch of
applications sot ware experts that understood
not only how to develop software but also
how to trare « ~ales force in supporting that
software. So i company didn’t just bring 1n
a bunch of vertical applications software but
also the ability to train a whole field staff to
offer specialized support.™

Will other oems be acquired? **1t’s an
interesting proposition,”” says Horne at
Prime, “hut | think it's a double-edged
sword. Most of the software firms that have
been acquired lately have gone at an extreme-
ly high price to-carings ratio. The only time
it may be worthwhile is in the startup phase,
but then you have a real problem of how to
keep the princtpal engineers interested in the
product once they are owned by a Fortune
500 company ™

Many oems are equally skeptical. ™1
could scc 1t happening.”” says Ken Tratar at
Systems Management, “*and it would foul
everything up. They re buying oems to buy
their vertical marketplace . . . but they don’t
know the business. They look at an oem with,
say, a particular piece of hospital software.
and they say. "Boy. we’ll just buy that oem
and make the product available to al! ot our
people across the country to sell.” And that’s
a fatal flaw, because the average computer
salesman doesn 't know anything about hospi-
tals. Or the other hand. the oem people prob-
ably came from a hospital environment or
worked very closely with a hospital to design
their package and have the product knowl-
edge to sell on a limited basis.™ *

Carol Fletcher is a Chicago-based
free-lance writer with a special interest
in technology and business topics.
She tformerly was an editor and
reporter for several computer-related
magazines. :

CARTOON B8Y SIDNEY HARRIS.

