TABLE 8.15-1 (continued)

$$+ [ABD] + [ACD] + [ABS] + [ACS] + [ADS] - [AB] + [AC] - [AD] - [AS] + [A] p(n-1)(q-1)(r-1)(u-1) 26 SS_{total} = [ABCDS] - [X] npqru - 1$$

8.16 COMPUTATIONAL PROCEDURES FOR TYPE SPF-pr.qu DESIGN

A type SPF-pr.qu design represents an extension of analysis procedures described for type pr.q and p.qr designs. A block diagram of this design appears in Figure 8.16-1 The structural model for the design is

$$\begin{split} X_{ijklm} &= \mu + \alpha_i + \gamma_k + \alpha \gamma_{ik} + \pi_{m(ik)} + \beta_j + \alpha \beta_{ij} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk} + \beta \pi_{jm(ik)} \\ &+ \delta_l + \alpha \delta_{il} + \gamma \delta_{kl} + \alpha \gamma \delta_{ikl} + \delta \pi_{lm(ik)} + \beta \delta_{jl} + \alpha \beta \delta_{ijl} + \beta \gamma \delta_{ikl} \\ &+ \alpha \beta \gamma \delta_{ijkl} + \beta \delta \pi_{jlm(ik)} + \varepsilon_{o(ijklm)} \end{split}$$

			d_2^1 d_1^2		d_2	
ac 11	3 1	s ₁	51	<i>s</i> ₁]	
ac12	s ₂	s ₂	52	5 2	1	
ac21	53	33	5 3	53	7	
ac22	54	<i>5</i> ₄	84	54		

Figure 8.16-1 Block diagram of type SPF-22 22 design

The computational formulas for the design, degrees of freedom, and F ratios for Model III appear in Table 8.16-1. The meaning of the terms should be clear from previous examples.

TABLE 8.16-1 Computational Formulas for Type SPF-pr qu Design and F Ratios

Computational Formulas		df	F ratio (A, B, C) and D Fixed Effects Subjects Random	
1	$SS_{between sub}$ = $[ACS] - [X]$	npr i		
2	$SS_A = [A] - [X]$	р	[{ }]	
3	$SS_C = [C] - [X]$	r < 1	[3]	