$$\sum_{1}^{q} SS_{A} \text{ for } b_{j} = SS_{A} + SS_{AB}$$

$$\sum_{1}^{q} \sum_{1}^{r} SS_{A} \text{ for } bc_{jk} = SS_{A} + SS_{AB} + SS_{AC} + SS_{ABC}$$

$$\sum_{1}^{r} SS_{AB} \text{ for } c_{k} = SS_{AB} + SS_{ABC}.$$

One can see that whenever the main effects have different error terms, these error terms are pooled in testing the simple main effects. The error terms in Table 8.14-5 are given as weighted pooled mean squares divided by their pooled degrees of freedom. For example, the error term for testing SS_A at b_1 can be computed by either of the following formulas:

$$\frac{\text{MS}_{\text{subj w.groups}} + \text{MS}_{B \times \text{subj w.groups}}(q-1)}{q} = \frac{1.562 + .812(1)}{2} = 1.187$$

$$\frac{\text{SS}_{\text{subj w.groups}} + \text{SS}_{B \times \text{subj w.groups}}}{p(n-1) + p(n-1)(q-1)} = \frac{9.375 + 4.875}{2(3) + 2(3)(1)} = 1.188.$$

The two answers agree within rounding error.

COMPARISONS AMONG MEANS

Tests of differences among means follow the procedures described in Section 8.7. For example, the error term for Tukey's ratio for the comparison $\hat{\psi} = \bar{A}_1 - \bar{A}_2$ is

$$\sqrt{\frac{\mathsf{MS}_{\mathsf{subj w.groups}}}{nqr}}.$$

The divisor, nqr, is the sample size for \overline{A}_i . The comparison $\hat{\psi} = \overline{A}\overline{B}_{11} - \overline{A}\overline{B}_{21}$ has as its error term

$$\sqrt{\frac{MS_{\text{subj w.groups}} + MS_{B \times \text{subj w.groups}}(q-1)}{nr(q)}}$$

The term $[MS_{subj\ w.groups} + MS_{B \times subj\ w.groups}(q-1)]/q$ is the F ratio denominator for testing MS_A at b_j . The term nr=8 is the number of scores in each cell of the AB Summary Table.

EXPECTED VALUES OF MEAN SQUARES

The expected values of mean squares for Models I, II, and III can be determined from Table 8.14-6. The terms 1 - p/P, 1 - q/Q, 1 - r/R,