$F_{\text{max}} = \left[\frac{\text{largest MS}}{\text{smallest MS}}\right]$ with v_1 and v_2 degrees of freedom.

Six variance-covariance matrices are associated with a type SPF-2.22 design— $q \not\approx q$ at a_1 , $q \times q$ at a_2 , $r \times r$ at a_1 , $r \times r$ at a_2 , $qr \times qr$ at a_1 , and $qr \times qr$ at a_2 . In order for each of the within-subjects F ratios to be distributed as the F distribution, all variances for a particular population dispersion matrix should be equal to σ^2 and all covariances equal to $\rho\sigma^2$ Section 8.5 described procedures for determining the tenability of the hypotheses that, for example, (1) the $q \times q$ population matrix at level a_1 is equal to the $q \times q$ matrix at a_2 and (2) the pooled dispersion matrix

MS	F	E(MS) A, B, and C Fixed Effects Subjects Random
3.125	$[\frac{2}{3}] = 2.00$	$\sigma_{\epsilon}^2 + qr\sigma_{\pi}^2 + nqr\sigma_{\pi}^2$
1.562		$\sigma_{\varepsilon}^2 + qr\sigma_{\pi}^2$
162.000	$\left[\frac{5}{7}\right] = 199.51**$	$\sigma_{\epsilon}^2 + r\sigma_{\beta\pi}^2 + npr\sigma_{\delta}^2$
6.125	$[\frac{6}{7}] = 7.54*$	$\sigma_{\varepsilon}^2 + r\sigma_{\theta s}^2 + nr\sigma_{r\theta}^2$
.812		$\sigma_{\epsilon}^2 + r\sigma_{\theta \pi}^2$
24.500	$\left[\frac{8}{10}\right] = 61.87**$	$\sigma_{\varepsilon}^2 + q\sigma_{\gamma\kappa}^2 + npq\sigma_{\gamma}^2$
10.125	$\left[\frac{9}{10}\right] = 25.57**$	$\sigma_{\epsilon}^2 + q\sigma_{\gamma R}^2 + nq\sigma_{\gamma \gamma}^2$
.396		$\sigma_{\varepsilon}^2 + q\sigma_{\gamma\pi}^2$
8.000	$\left[\frac{11}{13}\right] = 25.64**$	$\sigma_{\varepsilon}^2 + \sigma_{\theta\gamma R}^2 + np\sigma_{\theta\gamma}^2$
3.125	$\left[\frac{12}{13}\right] = 10.02*$	$\sigma_{\varepsilon}^{2} + \sigma_{\beta\gamma\kappa}^{2} + n\sigma_{\alpha\beta\gamma}^{2}$
.312		$\sigma_{\varepsilon}^2 + \sigma_{\theta\gamma\pi}^2$

for the two levels of A has the symmetry described above. Identical tests can be performed for the $r \times r$ dispersion matrices and $qr \times qr$ dispersion matrices. If the assumptions of equality and symmetry of the variance-covariance matrices are not tenable, conservative F tests as presented in Table 8.14-4 can be computed. It will be recalled from Section 8.5 that a conservative F test is computed in the usual way but that the F table is entered with modified degrees of freedom.

TESTS OF SIMPLE EFFECTS

It is apparent from Table 8.14-2 that treatments B and C, as well as the AB, AC, BC, and ABC interactions, are significant. Because the triple