TABLE 8.14-1 (continued)

$$SS_{C} = [C] - [X] = 24.500$$

$$SS_{AC} = [AC] - [A] - [C] + [X] = 10.125$$

$$SS_{C \times \text{subj} \text{ w.groups}} = [ACS] - [AC] - [AS] + [A] = 2.375$$

$$SS_{BC} = [BC] - [B] - [C] + [X] = 8.000$$

$$SS_{ABC} = [ABC] - [AB] - [AC] - [BC] + [A] + [B] + [C] - [X] = 3.125$$

$$SS_{BC \times \text{subj} \text{ w.groups}} = [ABCS] - [ABC] - [ABS] - [ACS] + [AB] + [AC] + [AS] - [A] = 1.875$$

TABLE 8.14-2 Analysis of Variance Table

	Source	SS	df
1	Between subjects	12.500	np-1=7
2	A	3.125	p - 1 = 1
3	Subj w.groups	9.375	p(n-1)=6
4	Within subjects	223.000	np(qr-1)=24
5	В	162.000	q-1=1
6	AB	6.125	(p-1)(q-1)=1
7	$B \times \text{subj w.groups}$	4.875	p(n-1)(q-1)=6
8	С	24.500	r - 1 = 1
9	AC	10.125	(p-1)(r-1)=1
10	C × subj w.groups	2.375	p(n-1)(r-1)=6
11	ВС	8.000	(q-1)(r-1)=1
12	ABC	3.125	(p-1)(q-1)(r-1)=1
13	BC × subj w.groups	1.875	p(n-1)(q-1)(r-1) = 6
14	Total	235.500	npqr-1=31

^{*}p < .05.

TESTS FOR HOMOGENEITY OF ERROR TERMS

Four sets of error terms in a type SPF-2.22 design can be tested for homogeneity. The variances estimated by $MS_{subj\ w.group\ a_i}$ at p levels of A should be homogeneous. Similarly, the variances estimated by $MS_{B\times subj\ w.group\ a_i}$ at p levels of A should be homogeneous, and the same is true for $MS_{C\times subj\ w.group\ a_i}$ and $MS_{BC\times subj\ w.group\ a_i}$. Computational procedures for computing the required mean squares at level a_1 appear in Table 8.14-3. The formulas at level a_2 follow the same pattern as those at level a_1 . An F_{max} ratio for these partitioned error terms has the form

^{**}p < .01.