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8 / SPLIT-PLOT DESIGN—

- FACTORIAL DESIGN WITH
BLOCK-TR EATMENT
CONFOUNDING

DESCRIPTION OF DESIGN

Subject heterogeneity is the rule rather than the exception in
behavioral research. The randomized block design described earlier
enables an experimenter to partially isolate the effect of subject hetero-
geneity in testing treatment effects. This is accomplished by using matched
subjects or repeated measures on the same subject. In a randomized block
design, blocks of subjects are composed in such a way that variation among
subjects within each block is less than the variation among blocks. A
split-plot design with repeated measures or matched subjects represents
an extension of this principle to experiments having two or more treatments.
This design is appropriate for experiments that meet. in addition to the
general assumptions of the analysis of variance model, the following
conditions:

1. Two or more treatments, with each treatment having two or more
levels, that is, p levels of A, which is designated as a between-block or
nonrepeated-measurements treatment, and g levels of B, which is desig-
nated as a within-block or repeated-measurements treatment. where
pand g > 2. * '

2. The number of combinations of treatment levels is greater than the desired
number of observations within each block. "

3. If repeated measurements on the subjects are obtained, each block
contains only one subject. If repeated measurements on the subjects are
not obtained, each block contains ¢ subjects.

4. For the repeated-measurements case, p samples of n subjects each from
a population of subjects are randomly assigned to levels of the non-
repeated treatment (A). The sequence of administration of the repeated
treatment levels in combination with one level of the nonrepeated
treatment is randomized independently for each block. Exception to
this procedure is made when the nature of the repeated treatment pre-
cludes randomization of the presentation order.

5. For the nonrepeated-measurements case, p samples of n blocks of ¢q
subjects from a population of subjects are randomly assigned to levels
of treatment (A). After this, levels of treatment (B) are assigned randomly
to the g subjects within each block.
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A COMPARISON OF THREE
FACTORIAL EXPERIMENTS

A graphic comparison of three experimental designs—a completely
randomized factorial design, a randomized block factorial design, and a
split-plot design—is shown in Figure 8.1-1. In this figure the split-plot

a ay a, a; a; a

by by b by by by b by b by b b
a, | s; 53 3 I s, l s l 5, I 5 I 5y | Ll al s i | s
a; | S Ss S¢ | al s S Sy
(a) Type CRF-23 design (b) Type RBF-23 design (¢) Type SPF-2.3 design

Figure 8.1-1 Comparison of three types of
designs.

repeated measures design is designated by SPF-2.3. The letters s, S5 - . . S¢
refer to sets of n subjects. In the type CRF-23 design, each set of subjects
receives only one of the pq treatment combinations. An examination of
part (a) reveals that the design is composed of two completely randomized
designs. Subjects assigned to treatment level a; comprise one type CR-3
design, while subjects assigned to a, comprise the other type CR-3 design.
The building block for the designs shown in parts (b) and (¢) is a randomized
block design. In a type RBF-23 design, a single set of subjects (s;) receives
all pq treatment level combinations. By contrast, in a split-plot design
subjects in set s, receive only one level of treatment A but all levels of

- treatment B. The analysis of treatments A and B in a split-plot design,
when viewed separately, resembles the analysis for a completely ran-
domized design and a randomized block design, respectively. This analogy
is discussed in Section 8.4.

SPECIAL FEATURES OF
SPLIT-PLOT DESIGNS

Split-plot repeated measures designs in which a subject receives
all levels of some treatments but only one level of other treatments are
sometimes referred to as mixed designs (Lindquist, 1953). Winer (1962)
uses the designation “multifactor experiments having repeated measures
on some elements” for this class of designs.

The origin of the term mixed design as a designation for split-
plot designs can be readily discerned from an inspection of Figure 8.1-1c. i
In this figure differences between levels a, and a, involve differences ‘
between s, and s, as well as the effects of treatment A. However, differences
between any two levels of treatment B do not involve differences between ]
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s, and s, because the same subjects are observed under all levels of B.
In a type SPF-2.3 design, the main effects of treatment A are said to be
completely confounded with differences between blocks or sets of subjects.
The main effects of B and the interaction 4B are free from such confounding.
A confounding scheme in which a treatment is confounded with blocks does
not affect the interpretability of the treatment effects, only the precision of
the estimate. The effects of treatment A are described as between-block
(subject) effects, while the effects of treatment B and interaction AB are
described as within-block (subject) effects. Tests on B and AB are generally
much more powerful than tests on A.

The general designation for a two-factor repeated-measures split-
plot design is SPF-p.g. According to this designation all lower-case letters
before the dot stand for the number of levels of between-block treatments;
letters after the dot stand for levels of within-block treatments.

There are many research problems in the behavioral sciences where
split-plot designs are especially appropriate. A general problem inherent in
all behavioral research is subject heterogeneity. Differences among subjects
are often such as to obscure treatment effects. A repeated measures or
matched subjects design offers the advantage of controlling subject hetero-
geneity. In addition to this advantage, a repeated measures design is
particularly useful in assessing certain types of treatment effects. For
example, in experiments designed to investigate learning, transfer, fatigue,
and so on, the use of repeated measures on the same subjects is often the
simplest way to investigate the research problem. Randomization of the
order-of-treatment level presentation for these kinds of variables is not
always feasible, for the nature of the treatment dictates the order.

A LIMITATION OF THE
USE OF REPEATED MEASURES

A word of caution concerning the use of repeated measurements on
the same subject is in order. When matched subjects are assigned to
within-block treatment levels, it may be assumed that estimates of treat-
ment effects that have been obtained from the q cells are correlated. The
model underlying type SPF-p.q designs permits a particular kind of statis-
tical dependency between observations in the q levels of B but requires
that the error portion of these scores must be independent of each other
and the treatment effects. There is ample reason to believe that in repeated
measures experiments the error components of the scores are not indepen-
dent and that the variance-covariance matrix departs from the required
form. That is, the g x g repeated measures dispersion matrix does not
have all diagonal elements equal to ¢? and all off-diagonal elements
equal to pa?. Procedures for investigating this issue are presented in
Section 8.5. Bargmann (1957) presents a comprehensive discussion of
homogeneity assumptions in repeated measures designs. Lana and Lubin

|
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(1963) discuss in detail the problems resulting from unequal correlations
among levels of the repeated treatment. Subsequent sections describe
suggested procedures for coping with these problems.

The model underlying the F test for a split-plot repeated measures
design does not include a term for sequence or carry-over effects. Thus
repeated measurements on the same subject should be avoided for treat-
ments in which the administration of one level affects performance on a
subsequent level. An exception to this. of course, is when carry-over effects
are the primary interest of the experimenter. Gaito (1961) has discussed
the problem of order effect when repeated measures are obtained on the
same subjects and has emphasized the importance of randomizing pre-
sentation of treatment levels.

LAYOUT AND COMPUTATIONAL
PROCEDURES FOR TYPE -
SPF-p.q DESIGN

The layout of a type SPF-2.4 design is illustrated in Table 8.2-1.
Let us assume that an experimenter is interested in vigilance performance.
He has designed an experiment to evaluate the relative effectiveness of two
modes of signal presentation during a four-hour monitoring period.
Treatment A, which is designated as mode of signal presentation. has two
levels, a, = auditory signal (tone) and a, = visual signal (light). Treatment
B has four levels corresponding to successive monitoring periods: by = |
hour, b, = 2 hours, by = 3 hours, and b, = 4 hours. The research hypoth-
eses leading to this experiment can be evaluated by means of statistical
tests of the following null hypotheses:

Hy:2%, =0 for all i

Hy:%#0 for some i

H:B;#0 for some j

Hy:af;; =0 for all ij
Hy:af; #0 for some ij.

The level of significance adopted for all tests is .05.

A total of eight subjects representing two random samples of
four subjects each has been obtained from a common population. The
two samples of subjects are randomly assigned to the p = 2 levels of A
and observed under all ¢ = 4 levels of B. The dependent variable is desig-
nated as response latency to the auditory and visual signals. Response
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is appropri: e for many research situations. For example, in the vigilance
experiment, subjects assigned to the auditory display condition a, might
find this mc Je of signal presentation unpleasant. As a result, two of the
subjects mig :t refuse to complete the experiment. In this example, unequal
cell frequen: s result from the nature of the experimental treatments. A
least-squarc . analysis, rather than an unweighted-means analysis, should
be used. Computational formulas based on the data in Table 8.10-1 are
given in Table 8.10-3.

TABLE 8.10-3 Computational Procedures for Least-Squares
Solution for Type SPF-2.4 Design

SSiw = [ABS] — [X] = 235.500
SSpeiweensubj = [AS] - [X] = 12.500
SS, = [4] - [X] = 5.633
SS.ubi w.aroups = [AS]  [A4] = 6.867
SSuwithin sub; = [ABS] — [AS] = 223.000
SSy = [B] — [X] = 194.500
SS.s = [4B] — [A] — [B] + [X] = 15.634
S wvj waroups = [ABS] — [AB] — [AS] + [4] = 12866

The analy: s is summarized in Table 8.10-4. In a least-squares
analysis, the partitioned sum of squares add up to the total sum of squares.

Tests of simple main effects and comparisons among means have
the same general form as tests based on equal cell frequencies. These
procedures are illustrated in Sections 8.6 and 8.7. They generalize to
the least-squares solution but require the substitution of the appropriate
value for n.

TABLE 8.10-4 Analysis of Variance Table for
Least-Squares Solution

Source SS df MS F

I Between subjects 12.500 N-1=17

2 A 5.633 p—1=1 5.633 [3] = 492
3 Subj w.groups 6.867 N-p=©6 1.144

4  Within subjects 223.000 Ng-1)=24

5 B 194.500 g—1=3 64.833 [$] = 90.6%
6 AB 15.634 p—Mg—-1H=3 5.21 [8]= 7.2v
7 B x subj w.groups 12.866 (N—-plg - 1)=18 715

8 Total 235.500 Ng — 1 =3I

*p < 0L
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The two solutions for unequal n’s illvstrated in this section each
require that the number of observations with n each block be equal.

THE PROBLEM OF ONE MISSING SCORE

The preceding solutions are appropriite when an entire bloc is
missing. The following procedure is applicab ¢ when only one score
block is missing. It is analogous to the methoc in Section 5.6 for estima g
missing values in a randomized block design. A missing score is estimatec y

nES,) + ZAB ) — T4,

ABSim =0 T iNg - D
where = number of blocks in level A4,
1 = number of levels of B.
¥ . = sum of remaining scores in block containing missing score.
YA , = sum of remaining scores in treatment combination AB;; ¢ 1-
taining missing score.
3 . = sum of remaining scores in treatment A; containing mis: g

score.

For .ample, assume that score ABS;,, in Table 8.2-1 is missing. * is
scot s estimated by

422) + 4(11) — 86

@-1n4-1n 31,

ABSIZZ =

whe IS, =27 —5=22
By, = 16 — 5 =
TA, =91 —5=1

The stimated score is ro sonably close to the original score in that - L.
wh is 5.

After inserting the stimate of the missing score into the data ma' 1x,
the nalysis of variance i carried out in the normal way. The degrec of
frec >m for MSg . qubjw. oups Should be reduced by one; for exan le,
df  pin—1)g— 1) — 1. An unbiased estimate of MSg, b wgroup. 19
ob ned by this procedu e, but all other mean squares are slightly ov -
est nated. According to \nderson (1946), the biases are small. He gi s
m¢ hods for obtaining w biased estimates, but it is doubtful if the add :d
lal or is justified. If anoth:r missing score occurs in the same A; treatme i,
th iterative procedure described in Chapter 5 may be used. If the second
m' sing score occurs in a different level of treatment A, the procedure of
es mating the score described above is repeated. A more complete d s-
cu sion of procedures for estimating missing scores may be found in Andcr-
so  (1946) and Khargonkar (1948).
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Standard error formulas due to Anderson (1946) for making com-
parisons among means by the ¢ test, when only one score has been estimated,
are shown below.

Comparisons among A; means can be made using the following t denomina-
tor:

\/5[Mssubj w.groups + %(n - 1)(‘1 - lstBxsubj w.groups)]
nq '
Comparisons among B; means employ the following ¢ denominator:
\/ZMSBXsubj w.;roups[l + %(n - 1)(‘1 - 1)(‘]/?)]
np

Comparisons among AB;; means at level g; use the following denominator:

\/2MSBXsubj w.groﬁps[l + %(n - 1)(‘1 - 1)((1/1’)] )

n

Comparisons among AB;; means at level b; use the following denominator:

\/2Ms:ubj w.groups/nq + 2MSBxsubj w.groups[(q - 1) +, %(n - 1)(4 - 1)(‘12)]
nq '

The foregoing formulas are used in comparing means based on one esti-
mated missing score. Procedures for determining the critical value for the
t test for pooled error terms appear in Section 8.7. If a comparison among
means does not involve a missing score, formulas given in Section 8.7
are appropriate.

If several missing scores occur in designs having three or more
treatments, the reader should consult Hazel (1946), Henderson (1953), and
Krishna Iyer (1940).

RELATIVE EFFICIENCY
OF SPLIT-PLOT DESIGN

An experimenter wishing to use a multitreatment factorial design
with subjects assigned to blocks may consider two of the designs described
thus far—a randomized block factorial design and a split-plot design.
However, he should examine several factors in choosing between these
two designs. If it is not possible to administer all treatment level com-
binations within each block, there is no choice. A split-plot design is
required. On the other hand, if there is a choice concerning the assignment
of treatment combinations in each block, the relative efficiency of the 4,
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B, and AB comparisons should be considered. In a split-plot design, the
B and AB effects are usually estimated more accurately than the A effects.
This results from the fact that variation within a block is usually smaller
than variation among blocks. The average standard error of a difference is
equal for both the randomized block factorial design and the split-plot
design. Thus the increased accuracy of the B and AB effects estimates is
obtained by sacrificing accuracy on the A effects. If the experimenter is
as interested in the A effects as he is in the B and 4B effects, the randomized
block factorial design should be used. It should also be noted that the
F ratio denominator degrees of freedom for 4, B, and 4B in the randomized
block factorial design are larger than the corresponding degrees of freedom
in a split-plot design.

A numerical index of relative efficiency of the two designs, disregard-
ing differences in degrees of freedom, is given by the following formulas
(Federer, 1955, 274). The data used in this example are from Table 8.2-2.

A efficiency
- [(p - I)Mssubj w.groups + p(n — I)MSBXsubj w.gtonps]/(pq - 1)

Mssubj w.groups

[ — 1)1.562 + 24 — 1).507)/[(2)4) — 1] _ .658
1.563 ~1.563

x 100

= 42.1 percent.
B and AB efficiency
= [(p - l)MSsubj w.groups + p(n — I)MSBXsubj w.groups]/(pq - l)

MSB xsubj w.groups

_[(2 = 1)1.563 + 2(4 — 1).507)/[(2x4) — 1] _ 658
- 507 T 507

x 100

= 129.8 percent.

Hence, in this example, a test of the A treatment is less than half as efficient
in the split-plot design as it is in the randomized block factorial design.
On the other hand, the B and AB tests are more efficient in the split-plot
design. The relative efficiency of tests is a basic consideration in the design
of experiments.

INTRODUCTION TO
TYPE SPF-pr.g DESIGN

The split-plot design described so far in this chapter has had two
treatments. The general analysis procedure for a two-treatment split-plot
design can be extended to designs having three or more treatments.
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TABLE 8.13-2 Analysis of Variance Table for
Type SPF-pru.q Design
F(A,B,C,
and D
- Fixed
Effects,
Unweighted- Subjects
Source Regular df means df Random)
1 Between subjects npru — 1 N-1
2 4 p-1 p-1 (8]
3 C r—1 r—1 3]
4 D u-—1 u-—1 4
5 AC (p—1r-1 p—-1r—-1) (3]
6 AD (p—Nu—1) (p—u-1 8]
7 CD (r—1Xu—-1) r—1u-1) (3]
8 ACD (- 1r—1tu-1) (p—1r—1u-1) 5]
9 Subj w.groups pru(n — 1) N — pru
10 Within subjects npru(g — 1) Nig-1)
11 B qg-1 qg-1 [
12 4B (p-1X¢-1 (p-g-1n  [#]
13 BC @-r=1 @-r-1n  [#]
14 BD (gq—Du—-1 (g—-Du-=1 (4]
15 ABC (p—g-r—1 p-g—-r-1  [#]
16 ABD (p — 1Xg — 1Xu — 1) (p—INg—1u—-1 [15]
17 BCD (g—1)r — u—1) (g—r—Du—-1 (4]
18 -ABCD (p— g — r—Du—1) (p— 1Xg — D(r — 1)u—1) (1]

19 B x subj w.groups prun — 1Xg — 1) (N —prufg — 1)

20 Total * npgru — 1 Ng — |

814 COMPUTATIONAL PROCEDURES |
FOR TYPE SPF-p.qr DESIGN ] i

it

A split-plot design can be used in research situations requiring |
repeated measures on two or more treatments. One variation of this design, }
called a type SPF-p.gr design, is described here. This design has one |
between-block treatment (4) and two within-block treatments (B, C).
The design requires np samples of subjects who are randomly assigned to
treatment A, with n subjects (blocks) in each level. The sequence of adminis-
tration of the BC treatment combinations within an np block is randomized
independently for each subject. An alternative to using repeated measures
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on each subject is to randomly assign the BC treatment combinations to
qr matched subjects within each block. This latter design requires a total
of npgr subjects.

These three-treatment designs are similar to split-split-plot designs
used in agricultural research. The essential difference is that, in a split-
split-plot design, levels of treatment A are assigned to plots (plots correspond
to blocks of subjects in behavioral research). These plots are then subdivided
for the levels of treatment B and subdivided again for the levels of treatment
C. The levels of treatment B are randomly assigned to split-plots and
levels of C are randomly assigned to split-split-plots. This randomization
procedure can be contrasted with that used for a type SPF-p.gr design,
where the BC treatment combinations are randomly assigned within each
block. The two randomization procedures lead to different error terms for
testing treatment C and all interactions involving C.

Figure 8.14-1 shows a block diagram of a type SPF-2.22 design.
The structural model for this design is

Xigm =B+ &+ Ty + B; + 7 + afiy; + aya + ﬁ’/jk + afyin

+ Bltimay + Yamiy + BYTjkmaty + Eogijim)-

b, b, b, b,
' ¢ ¢ €

a 5 S 5 L

N L4
ik bt mj

a; S2 $2 $2 $2

|~ design.

Because the analysis of this, design poses computational problems
not previously discussed, a numerical example is given in Table 8.14-1,
where the following notation is used:

plevelsof a; = 2
q levels of b; = 2
r levels of ¢, = 2

nlevels of s, = 4
N pn
L=
1 11

The analysis is summarized in Table 8.14-2.

Figure 8.14-1 Block diagram of type SPF-2.22
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TABLE 8.14-1 Computational Procedures for
Type SPF-2.22 Design

(i) Data:
, ABCS Summary Tuble
b, b, b, b, LA
$5 45 2348
c c c [ A
1 2 1 2 l; ar
5y 3 4 7 7 21 110.25
a, s3 6 5 8 8 27 182.2§
Sy 3 4 7 9 23 132.25
Sa 3 3 6 8 20 100.00
Ss 1 2 5 10 18 81.00
a, Se 2 3 6 10 21 110.25
Sq 2 4 S 9 20 100.00
Sg 2 3 6 11 22 121.00
ABC Summary Table AB Summary Tuble AC Summary Table
b b b b 4 \?
1 1 2 2 . (ZI:A)
c, € ¢ € b, b, zl:A r ¢, ¢
n=4 nr=8 ng =8
a, | 15 16 28 32 a, 31 60 91 517.5625 a, | 43 48
a, 7 12 22 40 a, 19 62 8t 410.0625 a, | 29 52
_ I P
YB= 50 122 YCc= 72 100
1 1
4 2 [ 2
-(3) (9)
! = 156.25 930.25 ! =324 625
npr npq

BC Summary Table ABS Summary Table

ACS Summary Tuble

91 C2 b, b, €y €2

np=28 r=2 q=2
b, 22 28 5y 7 14 5 10 13
_ 55 11 16 S, 14 13
b, 50 72 4 ™ 7 16 4 Ss 10 13
_ A 6 14 S 9 B
Ss 3 15 Ss 6 12
a Se 5 16 a Se 8 13
2 54 6 14 2 sq 7 13
Sg 5 17 Sg 8 14

an e i
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TABLE 8.14-1 (continued)

(ii) Computational symbols:

qr N
Py YYABCS =3 + 6 + 3 + -+ + 11 = 172000
111

r N
}EZZ{ABCS)’ = [ABCS] = (3)* + (6)* + - + (11)* = 1160.000
111

e e R 5 0 R DS S ST AL 3. 555

(i1} Computational formulas:

q r N 2 .
T =[X]= 12 _ g,
=N [X] = Gy = 02450
qr 2
N( ):As)
YT/ lqr = [AS] = 11025 + 18225 + - - + 121.00 = 937.000
1
q 2
)
3L o = [A] = 5175625 + 410.0625 = 921,625
1
P 2
. (za) :
y 'npr = [B] = 15625 + 930.25 = 1086.500 i
1 N
}v:iuml - [4B] = @ant e o, 62 _ 1095750
e ] 8 8 )
2L (ABSP M (147 a7’ _
13— = [4BS] = 5+ e 4 T = 110000
P \2
(39)
'/ _[c]= 25 = 949.
Y = [€] = 324 + 625 = 949.000 :
2 I (ACP @3 @8R !
;l " = [AC] = s T s Tt = 962.250
pran 2 2 2 2 .:
DI DAL PPy I U R L PR Lo s 7YY :
111 q 2 2 2
4. (BCP Q2 (8 () E
=, TBA=TFm T by = 1P
\
pPar 2 . 2 2 2
$55 ABOT_ rapey = WX LU B hans00 |
111 n 4 4 4 |
|
|

SSom = [ABCS] — [X] = 235.500 '
SSeeiween sub; = [AS] ~ [X] = 12.500 |
SS, = [4] - [X] = 3.125 ‘

SS.ubj w.groups = [AS] — [4]) = 9.375
SSuithin subj = [4BCS] — [AS] = 223.000 !
SSp = [B] - [X] = 162.000 a1l
SS.s = [AB] — [4) - [B] + [X] = 6.125 a 3
S x subj w.groups = [ABS] — [AB] — [AS] + [A] = 4875 *
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TABLE 8.14-1 (continued)

$Sc = [C] - [X] = 24.500
$S,c = [AC] - [4] - [C] + [X] = 10.125
ety warowm = [ACS] = [AC] — [4S] + [4] = 2375
SSpc = [BC] - [B] - [C] + [X] = 8000
SS,5c = [ABC] — [4B] - [AC] - [BC] + [4] + [B] + [€] - [X] = 3.125
= [ABCS] — [ABC] — [4BS] - [ACS] + [4B] + [AC] + [4S]
- [A] = 1875

SSM.‘ x subj w.groups

TABLE 8.14-2 Analysis of Variance Table

Source : SS df
1 Between subjects 12.500 np—1=17
2 A 3.125 p—-1=1
3 Subj w.groups 9.375 pn—1)=6
4 Within subjects . 223.000 nplgr — 1) = 24
s B 162.000 g-1=1
6 AB 6.125 p-g-D=1
7 B x subj w.groups 4875 pin —1g—-1) =6
8 C 24.500 r-1=1
9 AC 10.125 p—-r-1=1
10 C x subj w.groups 2375 pn—1r-1)=6
11 BC 8.000 ) q-txr-n=t
" 12 ABC 3.125 p- g —-Nr—-1D=1
13 BC x subj w.groups 1.875 pn—1Xg—1Xr—1=6
14 Total ’ 235.500 npgr — 1 = 31
*p < .05
**p < Ol

TESTS FOR HOMOGENEITY OF
ERROR TERMS

Four sets of error terms in a type SPF-2.22 design can be tested
for homogeneity. The variances estimated by MS p; wgroupa at P levels
of A should be homogeneous. Similarly, the variances estimated by
MS 5 x subj w.group a; &t P levels of A should be homogeneous, and the same is
true for MSc x subj w.group ai 30d MSpcx subj w.group ar Computational proce-
dures for computing the required mean squares at level a, appear in Table
8.14-3. The formulas at level a, follow the same pattern as those at level a,.
An F,, ratio for these partitioned error terms has the form
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smallest MS

=[largest Ms]wi th v, and v, degrees of freedom.

Six variance-covariance matrices are associated with a type SPF-2.22
design—q x q at a;, g x q at a,, r x r at a,, r xrata, qr x gr at a,,
and gr x gr at a,. In order for each of the within-subjects F ratios to be
distributed as the F distribution, all variances for a particular population
dispersion matrix should be equal to ¢2 and all covariances equal to po?
Section 8.5 described procedures for determining the tenability of the
hypotheses that, for example, (1) the g x q population matrix at level a,
is equal to the ¢ x ¢ matrix at a, and (2) the pooled dispersion matrix

E(MS) A, B, and C Fixed Effects,

MS A F Subjects Random
3.125 [$]= 200 62 + gre? + ngro?
1.562 a? + gre?
162.000 [3] = 199.51** o} + ro}, + npro}
6.125 [§]= 754+ ol + ro}, + nral,
812 ol + ro},
24.500 [5] = 61.87** al + qol, + npqa?
10.125 [%] = 25.57*+ o + qol, + ngal,
396 ol + qo?,
8000 (1] = 2564** O + Ohye + npaj,
3.125 (131 = 1002* o} + oj. + noly,
312 . ol + o},

for the two levels of A has the symmetry described above. Identical tests
can be performed for the r x r dispersion matrices and gr x gr dispersion
matrices. If the assumptions of equality and symmetry of the variance-
covariance matrices are not tenable, conservative F tests as presented in
Table 8.14-4 can be computed. It will be recalled from Section 8.5 that a
conservative F test is computed in the usual way but that the F table is
entered with modified degrees of freedom.

TESTS OF SIMPLE EFFECTS

It is apparent from Table 8.14-2 that treatments B and C, as well
as the AB, AC, BC, and ABC interactions, are significant. Because the triple




304

SPLIT-PLOT DESIGN

TABLE 8.14-3 Partitioning of Error Terms
for Tests of Homogeneity

(on) (0]

S,ut; = -
E 'subj w.group @) ; qr "qr
df=n-1 qr 2 q 2
ss _ ¢n (ABSU,.)Z ¢ (ABU)Z n (;;Asljkm) . (;All)
B x subj w.group @y ;; r - ; nr - ; qr nqr
df=(n-1Xg—1)
(q ’ 2 q 2
s _ ii (ACS..,,.)Z _ i(AC")Z _ i ;;Asljlu) +(ZAII)
C x subj w.group ay ~ e q n nq n qr nqr
df=(n—1Nr—1

qrn "(ABC _)2 ,'"(ABS",,.)Z ra (ACS m)z
SSBCx subj w.group a; = ZEZ‘:ABCSLKM - zz_—"”}_ - ;; r‘l - z;.z:, q“‘

qr 2 q 2
AS, A
(4B,)* < (ACW i(;‘ "*“) <l )
1

Z P S A

q
+; nr 1. nq qr hqr
di=(n—1IXg—1r—1

TABLE 8.14-4 Conservative F Ratio Degrees of Freedom

Numerator of F ratio df
MS, I, ptn — 1)
MS 5 (p—Dpn—1
MS, ILpn=1)
MS ¢ p—tlpn—1)
MSgc * 1, pin = 1)
MS zc p—1lpn-1)

interaction is significant, the experimenter might want to test the signifi-
cance of simple-simple main effects and simple interaction effects. These
tests are outlined in Table 8.14-5. The formulas are given for the first
level of each treatment only. The formulas at other levels of the treatments
follow the pattern given for the first level. The error terms appearing in
Table 8.14-5 for each test are appropriate for a mixed model.

The rationale underlying the selection of a denominator for F ratios
is presented in Section 8.6. The reader should be certain that he under-
stands the principles on which the determination of the correct error
terms is based. The terms given in the table are only correct for the mixed
model in which 4, B, and C are fixed effects and subjects are random
effects. No difficulty should be encountered in determining the error term
for other models if one remembers that

Rt 1L LA P Tt
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TABLE 8.14-5 Formulas for Testing Simple Effects

(i) AB interaction significant:

Error Term (A, B, and C Fixed Effects, Subjects Random)

P 2

2 (5e)

ss,ath, =¥ HMB)° \T T/
1

nr npr

q 2

¢ (54)

SSpata, = y A8 _\T7Y/
1

nr ngr

MS,

subj w.groups + Msl!subj w.lroupu(q - ”

q

MSB X subj w.groups

(i) AC interaction significant:

e
(e
sS,atc, = y A’ _\4

1 hq npq

r 2
2 (ZAH)
SSc ata, = Z “cw A/

nq nqr

Mssubj w.groups + MSCx:ubj w.'roups(r - l)
r

MSC X subj w.groups

(i) BC interaction significant:

q 2
> (i)
Ssnatcl = i‘icﬂ_)_l**

T np npq
r 2
r 2 (ZBM)
SScath, = ¥ (BCw® _\+ 7/
T np npr

MSBXsubj w.groups + MsBC!subj w.lmnps(r - l)
r

MS(‘K subj w.groups + MSBC!snbj w.groupx(q — ”
9

(iv) 4BC interaction significant :

u)?

2 )2
SS, atbe,, = Z‘A‘ch) _(BC

(ABC,,,) _(4C

n np

1)?

1

9
SSgatac,, =)

1

nq

_ (ABC“,)I (4B,,)
SSc at ab,, = ; - 2

P 2
28 (ABC,, (.ZC“>

SSpate, = |Yy T
11 n

— SS,at ¢, — SS, at

npq

(4

0.y

SS,{( at bl = ZZ (ABq.llk, (l

I 5

(ABCm) ('

npr

— SS,atb, — SS¢ at b,

SSgcata, = ZZ

11 nqr

— SSpata, — SS¢ at a,

Msw.cell

MSp . oubj w.groups + MSgc ;i w.groups{r — 1)
r

MSCXsllbj w.groups + MSBCK subj w.gmups(q - ”
q

MSB"S“bj w.groups + MSBCK subj w.;roups(r - ”
r

MSCKsubj w.groups + MSBC!subj wgroups(q - ”
q

MSBC x subj w.groups
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q

SSS, for b; = SS4 + SSas

1
qr
ZZSSA for ijk = SSA + SSAB + SSAC + SSABC
11

ZSSAB fOl‘ Ck = SSAB + SSABC'
1

One can see that whenever the main effects have different error terms,
these error terms are pooled in testing the simple main effects. The error
terms in Table 8.14-5 are given as weighted pooled mean squares divided
by their pooled degrees of freedom. For example, the error term for testing
SS, at b, can be computed by either of the following formulas:

Mssubj w.groups + MSBXsubj w.gmups(q - 1) — 1562 + 812(1)
q

= 1.187

Sssubj w.groups + SSBxsubj w.groups _ 9375 + 4875 _ 188

pn— 1) +pn— g =1  2B)+20))

The two answers agree within rounding error.

COMPARISONS AMONG MEANS

Tests of differences among means follow the procedures described
in Section 8.7. For example, the error term for Tukey’s ratio for the com-
parison § = 4, — A, is

Mssubj w.groups
. ngr )

The divisor, ngr, is the sample size for A;. The comparison Yy = AB,, —
AB,, has as its error term

\/Mssubj w.groups + MSBxsubj w.groups(q - 1)

nr(q)
The term [Mssubj w.groups + MSBxsubj w.groups(q - 1)]/‘1 is the F ratio
denominator for testing MS, at b, The term nr = 8 is the number of '
scores in each cell of the AB Summary Table.

EXPECTED VALUES OF MEAN SQUARES

The expected values of mean squares for Models I, II, and III can
be determined from Table 8.14-6. The terms 1 — p/P, 1 — q/Q, 1 — /R,
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¥
and 1 — n/N become zero if the corresponding effects are fixed and one
if the effects are random.
TABLE 8.14-6 Table for Determining E(MS) for
Type SPF-p.qr Design
Source , E(MS)
ms, 2 LA A Y A P LA Y L P
rror 4 ot (‘ N)G Q)(‘ R)“" * "6 Q) (‘ R)"”*
ded ( n Y. _r ) 2
ling . +q(! N 1 Ra.,.+nql R) O
S
+ qr(l - %)a} + ngro?
. q r r
§ Subj w.groups ol + 6 - E)é - E)a,’,, +gq 6 - F)af‘
9\,2 2
+r(l — =)oz + gro?
( Q) e
S O O o
r n p
+ np(l - —R—)oﬁ, + ré - ﬁ)aﬁ, + nré - —P—)of, + npra}
rod ’ n r r n
- AB 6l + 6 - ﬁ)(‘ - k—)a},, + n(l - E)d,’,, + r(l - ﬁ)aj,
- + nrol
B x subj w.groups a2 + (l - %)a},, + ro},
- c a,z+(l—%6—%)0§“+n6—%)6—g)03,,
q n P
+ npé - 6)6,., + qé - —ﬁ)af, + ng 6 - F)aﬁ, + npga?
AC a,z+(l—%Q—Q)aj,,+n6-—6)a,,,+q(l—N)a.f.
tio + ngo?,
of C x subj w.groups 2 + 6 - %) O3 + qa,
i 2 ny 2 P) 2 2
i BC a; + 6 - N)a,,, + né - ?)a,,, + npog,
ABC ol + (1 - %)a:,, + nok,
an BC x subjw.groups | 62 + a3,
R,
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TABLE 8.15-1 (continued)

+ [ABD] + [ACD]

+ [ABS] + [ACS)]

+ [ADS] - [AB] ~ [AC]

-- [AD] - [AS] + [ 4} LUES) VR ) (A ) (TR I
SSiotat = [ABCDS] -{Xx] npqru - 1

add.

COMPUTATIONAL PROCEDURES
FOR TYPE SPF-pr.quDESIGN

A type SPF-pr.qu design represents an extension of analysis proce-
dures described for type pr.g and p.qr designs. A block diagram of this
design appears in Figure 8.16-1 The structural model for the design 1s

Xijam = 1+ 0 + 7 + ayy + Ty + B, + afi, + Brix + aByij + BT iy
+ 0 + ady + Yoy + oydy, + O ity + By + afdy + Py,

+ B0y + BOM jpmiry + Eotijkimy

b, b, by b
d dy d d

acy, 5 5 s $

ac,,; | s2 3 53 $;

acy, S S3 3 33

ac,, S 58 S Se :Lgst:;: 8.16-1 Block diagram of type SPF-22 22

The computational formulas for the design, degrees of freedom, and
F ratios for Model III appear in Table 8.16-1. The meaning of the terms
should be clear from previous examples.

TABLE 8.16-1 Computational Formulas for
Type SPF-pr qu Design and F Ratios

F ratio

(4, B C

and D

Fixed

Effects

. Subjects
Computational Formulas Randonm

Ssb:lween suby = [ACS] - [XJ
SS, = [4] - [X]
S8 = [€] - [X]
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TABLE 8.16-1 (continued)

SS4c = [AC] - [4] - [C] + [X] p—1Xr -1
Sssub) w.groups = [ACS] - [AC] prin — 1)

SSuimin sub; = [ABCDS] — [ACS] npriqu — 1)
SSp = [B] — [X] g-1
SS.s = [4B] — [4] - [B] + [X] P-g-1
SSsc = [BC] - [B] - [C] + [X] (g—r =1
SS.sc = [ABC] ~ [A4B] - [AC]
— [BC] + [4] + [B]
+[C] - [X] P—1g-tr—1)
S« subj w.groups = [ABCS] ~ [ABC] - [ACS]
+ [AC] prin — I)g — 1)
SSp =[D] - [X] u~—1
SSup = [AD] - [A] - [D] + [X] (p— Mu—1)
SS¢p = [CD] - [C] - [DP] + [X] (r—u—-1
SSucp = [ACD] - [AC] ~ [AD]
- [cD] + [4] + [C]
+[D] - [X] (P —r—Du-1
S8p x subj w.groups = [4CDS] — [ACD] - [ACS]
+ [AC] prin — I)u — 1)
SSep = [BD] - [B] - [D] + [X] (g - Iu—1)
SS.sp = [ABD] - [4B] - [4D]
- [BD] + [4] + [B]
+[D] - [X] (p— g —u-1)
SSscp = [BCD] - [BC] - [BD]
- [€p] + [B] + [C]
+[D] - [X] (g — r = ju - 1)
SSascp = [ABCD] — [ABC] — [4ABD]
[ACD] - [BCD] + [4B]
+ [4C] + [4D] + [BC]
+[BD] + [CD] - [4] - [B]
- [C1-[p] + [x] (P~ g~ IXr—Du-1
SSBDXsub)’ w.groups — [ABCDS] - [ABCD]
- [ABCS] - [ACDS]
+ [ABC] + [ACD] + [ACS]
- [AC] prin — Mg — 1{u - 1)

SSieat = [ABCDS] - [X] npgru ~ |

e
e 2w oo

frs i ove e
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