308

REPEATED-MEASUREMENT AND OTHER EXPERIMENTAL DESIGNS

Applying the appropriate computation formulas, the following sums of
squares are obtained:

i

ROWS
Lk, T 394350 _ (L9TOF _
C 2:' T,. N~ N 40 = 1,565.00
COLUMNS
1& o, TP 1,045756 _ (19708 _
R ,Z. T. N | 10 20 = 7,553.10
INTERACTION
R C X ) l R T ) l Cc T ) T‘Z
SyX%t TR TR TN
_ 394,350 1,045,756 , (1,970)
= 122,984 - 4 0 + 20
= 16,843.40
TOTAL
RoCo L, T _(1.970)* _
E E Xe N~ 122,984 —n 25,961.50

r=1 c=1

Table 19.2 summarizes the analysis-of-variance data for this example.
Because this is a mixed model with n=1 and F,=s2s.2=.279, no
meaningful test of row effects is possible. The proper error term for col-
umn effects is s,.2. The F ratio for column effects is found to be 4.04.
The F ratios required for significance with 3 and 27 degrees of freedom as-
sociated with the numerator and denominator, respectively, are 2.96 at the
S percent and 4.60 at the | percent levels. Thus the column differences

Table 19.2
Analysis of variance for data of Table 19.1
/

Source of Sum of Degrees of Variance
variation squares freedom estimate
Rows 1,565.00 9 173.89=s,2
Columns 7,553.10 3 2,517.70 = 5.2
Interaction 16,843.40 27 623.83 = 5,2
Total 25.961.50

3'(-2 srz =

Fe=g=4.04 Fo=i= 279
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19.4 INTRODUCTION

In previous chapters the basic ideas involved in the design, analysis, and
interpretation of one-way classification experiments, and factorial experi-
ments, were discussed in considerable detail. In psychology and education
considerable use is made, both through choice and necessity, of other
experimental designs. The purpose of this chapter is to introduce the
reader in an elementary way to a number of other experimental designs in
common use. Some of these designs involve assumptions, and present
problems, that are not involved in designs previously discussed. Some
awareness and understanding of these assumptions and problems are es-
sential to the proper use of these designs.

Research workers in psychology and education make frequent use of
experimental designs in which measurements are repeated a number of
times on the same subjects. These designs, and the assumptions un-
derlying their use, are described in some detail in this chapter. Ran-
domized block designs, designs with nested factors, and Latin square
designs are also described.

The treatment of these designs in this chapter must of necessity be ele-
mentary. Some of these designs can be combined and extended in a vari-
ety of ways leading to experiments of much complexity. Because of the
ready availability of computers for data analysis, the current trend in psy-
chology and education is toward more complex designs. Questions can be
raised regarding the merits of this trend toward complexity. A much more
advanced treatment of the topics discussed in this chapter will be found in
books by Winer (1971), Myers (1972), and other authors.
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Many experiments in psychelogy and education require the repeated mea-
surement of the same subjects under a number of different conditions or
treatments. Such experiments may be single-factor experiments in which
each subject is tested or measured under a number of different experi-
mental conditions. The simplest experiment of this kind would be one in
which the same subjects are tested under two experimental conditions.
Sometimes, when the same subjects are tested under a number of different
treatments, the order of the presentation of treatments to subjects is ran-
domized independently for each subject or a systematic plan for the
ordering of the presentation of treatments to subjects is adopted. The pur-
pose of either randomization, or the use of a systematic plan for the or-
dering of treatments, is to eliminate effects which might result from the
order of the treatments. In some situations randomization is not appropri-
ate because the different levels of the treatment variable have a natural
order. This is the case where performance is measured at different time in-
tervals, as, for example, in the study of changes in dark adaptation with
time, or for different numbers of trials in a simple learning experiment.

Experiments of the type dgscribed above are called one-factor experi-
ments with repeated measurements. In such experiments N subjects are
measured under k conditions or treatments. The matrix of data thus ob-
tained is a table of numbers containing N rows and k& columns.

Repeated measurements may, however, be used in two-way classifica-
tion or higher-order factorial experiments. For example, in a 2 X 2 facto-
rial experiment four treatment combinations exist, four groups of experi-
mental subjects are used, and each combination is applied to a different
group of subjects. Experiments may be designed in which each of the N
subjects receives all four treatment combinations. The matrix of data is a
block of numbers containing two rows, two columns, and N layers, each
layer corresponding to a subject. In general, for an R X C factorial experi-
ment with repeated measurements the matrix of data is an R X C X N
block of numbers. The idea involved here can be extended to higher-order
factorial experiments.

Two-way classification experiments may also be conducted with re-
peated measurements over one factor but not over the other factor. Con-
sider an experiment involving two factors with three levels of one factor
and two levels of the other. If this were an independent-groups factorial
experiment, six treatment combinations and six groups of subjects would
be used. The investigator may, however, decide to use two groups of sub-
jects, with each of the two groups receiving only one level of one factor but
all three levels of the other. Thus the experiment has repeated measure-
ments over the factor with three levels, but not over the factor with two
levels.

Experiments with repeated measurements have advantages and disad-
vantages. One advantage is that the measurements obtained under the dif-
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ferent treatment conditions will in many experiments be highly correlated
since they are made on the same subjects. The presence of these correla-
tions will reduce the error term. 'Another advantage resides in the number
of subjects. It may be more economical in terms of time and effort to test
the same subjects under each treatment. A further point here is that the
nature of certain experimental problems demands the use of repeated-
measurement designs. One disadvantage of experiments with repeated
measurements is that performance under prior treatments may affect per-
formance under subsequent treatments due to either fatigue, practice,
boredom, or some other circumstance. Effects resulting from such circum-
stances are sometimes called carry-over effects. An investigator may not
be able to clearly decide whether the results observed under the different
treatments are due to those treatments or are due to the carry-over effects.
A further problem associated with repeated measurement designs in the as-
sumption made in the analysis of data. Not only is the usual assumption of
homogeneity of variances made but also an assumption is made regarding
the homogeneity of covariances. This matter is discussed in some detail in
Section 19.9.

ONE-FACTOR EXPERIMENTS WITH REPEATED MEASUREMENTS:
COMPUTATION AND EXPECTATION OF MEAN SQUARES

As indicated above, the data resulting from a one-factor experiment with
repeated measurements may be represented as a table of numbers in which
rows represent experimental subjects and columns represent treatments;
that is, the representation of the data is the same as that for the two-way
classification with one observation per cell. The analysis of such data in-
volves nothing new. The data are analyzed as in the two-way classifica-
tion case with one observation per cell. The required computation for-
mulas are given in Section 16.9. Three sums of squares result: sums of
squares for subjects (rows), treatments (columns), and interaction.

For a one-factor experiment with repeated measurements, subjects
constitute a random variable and treatments are usually viewed as fixed.
The model is the mixed model for n = 1. The expectations of the mean
squares are as follows:

Mean squares Expectation of mean squares
Subjects, s,2 g+ Cao,l
Treatments, s.2 g+ o,ut+ Roy?
Interaction, s,.? ol + owt

The proper error term for testing differences between treatments is
syt that is, F.=s.s.2. No unbiased test of individual differences
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E between subjects is possible, unless it is assumed that the interaction term
is 0. With nearly all sets of data this assumption is not warranted, because
the performance of subjects under different pairs of treatments is corre-
lated. Ordinarily in most experiments of this type individual differences
between subjects are of limited interest anyway, because with most vari-
ables that are the object of study the investigator expects a priori substan-
tial differences between subjects.
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4 Data for the analysis of variance with two-way classification: » =1,
resent treatments; i scores for a sample of subjects tested under four different conditions
at for the two-way E i
. . Conditions

sis of such data in- g _ i
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8 32 38 76 84 230 57.50 ‘
; 9 45 65 15 91 216 54.00 ‘
10 30 71 82 39 222 55.50 I
3 1
T, 349 487 419 715 T=1970 ( *
: X. 34.90 48.70 41.90 71.50 X =49.25 :
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’ ¢
E T.*=394350 > T.2=1.045756 2”: é Xt =122,984

r=1 c=t r=1 c=t
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Applying the appropriate computation formulas, the following sums of A

squares are obtained:

P b
x

ROWS “
R 2 2
Lsr-p=2 24350 _ Q2T — 1565.00
r=1 o
COLUMNS :
108 ., TP 1,045,756 _ (1970 _
R ,Z. T. N | 10 20 = 7,553.10
INTERACTION
R C x ) 1 R T y l C T . T‘z
rzlr=l " _‘Er;l " _ﬁ—(.; ‘ +W
. _ 394,350 1,045,756 (1,970)2
= 122,984 - 4 0 + 20
= 16,843.40
TOTAL
R 2 2 E
I Xt TT\I_ — 122,984 — (—"‘91—(7)& = 25,961.50

r=1 ¢=1

Table 19.2 summarizes the analysis-of-variance data for this example.
Because this is a mixed model with n=1 and F .= 85 s..2=.279, no
meaningful test of row effects is possible. The proper error term for col-
umn effects is s,.2. The F ratio for column effects is found to be 4.04.
The F ratios required for significance with 3 and 27 degrees of freedom as-
sociated with the numerator and denominator, respectively, are 2.96 at the
S percent and 4.60 at the 1 percent levels. Thus the column differences

o

Ly

Table 19.2
Analysis of variance for data of Table 19.1
/
Source of Sum of Degrees of Variance
variation squares freedom estimate
Rows 1,565.00 9 173.89 = 5,2
Columns 7,553.10 3 2,517.70 = 5.2
Interaction 16,843.40 27 623.83 = 5,2
Total 25,961.50
. 2 2
25 = 4.04 Fo=25=219

F.=

rc

L e i
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are significant at the 5 percent level but fall short of significance at the |
percent level.

‘4

19.5 TWO-FACTOR EXPERIMENTS WITH

REPEATED MEASUREMENTS

In Sections 19.3 and 19.4 one-factor experiments with repeated measure-
ments were considered. On occasion experiments are encountered that in-
volve two factors with repeated measurements. Given R levels of one
treatment and C levels of another, each subject may be tested under each
of the RC treatments. If R =2 and C = 2, the levels of R being R, and R,
and of C being C, and C,, there are four treatment combinations, R,C,,
R,C,, R,C,, and R,C,. Each of N subjects might receive all the four treat-
ments, the presentations being possibly, although not necessarily, arranged
in random order for each subject.

Such data constitute an RCN block of numbers. Rows and columns
are treatments, and layers are experimental subjects. These data are
analyzed as in the triple-classification case with one observation in each
cell. Use the computation formulas given in Section 17.8, writing n = 1.
Seven sums of squares result: rows, columns, subjects, R X C, R X S,
C XS, and RXCXS. There is, of course, no within-cells sum of
squares.

The model here is a mixed model with n = 1. Rows and columns will
ordinarily be fixed variables. Layers, or subjects, is a random variable.
For this model the expectation of the sums of squares and the degrees of
freedom are as follows:

Mean square Expectation of mean square df

Rows, 5,2 at+ Co,t+ NCo,? R-—1

Columns, s.2 .2+ Royt+ NRa)? C—1

Subjects, 52 g+ RCo? N-—1

RXC,s,.2 ol + o+ Noyt (R—INC-1

R XS, s,2 a4+ Co,? (R—NDIN—-D

C XS, 5.2 a2+ Ra,? (C—IXN-1)
RXCXS, s, o+ oy (R-=IXC-IDN—-1

Inspection of these expectations indicates that the appropriate error term
for testing row effects is the R X S mean square, F, = s,%/s,,2. The appro-
priate error term for testing column effects is the C X § mean square, F, =
sc*se*  The appropriate error term for testing R X C interaction is the
R X C X § mean square, F,.=s,%s%, Unless the R XS, C XS, and
R X C X § interactions are assumed to be 0, which with most sets of data
will not be the case, no unbiased test of differences between subjects, or
R X § or C X § interactions, can be made. These are ordinarily not of
interest.
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19.6 ILLUSTRATIVE EXAMPLE OF TWO-FACTOR
EXPERIMENT WITH REPEATED MEASUREMENTS

The following are fictitious illustrative data for a repeated-measurement
experiment with six experimental subjects tested under 2 X 3 = 6 treatment

combinations.
Subject 1 Subject 2
C, ) C, G, C, G, Cy
R, 4 5 7 16 R, 6 8 10 24
R, I 4 2 7 R, 3 6 6 15
5 9 9 9 14 16
Subject 3 Subject 4
C, C, C, C, C, Cy
R, 1 6 5 12 R, 2 10 12 24
R, 3 5 4 12 R, ] 4 7 12
4 11 9 3 14 19
Subject § Subject 6
C, C, C, C, C, C,
R, h 10 10 25 R, 1 7 8 16
R, 5 6 5 16 R, 2 8 7 17
10 16 15 3 1S 15

For computational purposes it is necessary to write down the totals for
rows by columns summed over subjects, rows by subjects summed over b
columns, and subjects by columns summed over rows. Viewing the data 3
as a cube of numbers, these are the numbers on the surface of the cube. :
The totals for rows by columns summed over subjects, T,., are as follows:

Tf".
Columns T,.
19 46 52 17
Rows
15 33 31 79
T 34 79 83 196=T.

———
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: The totals above are obtained by adding the cell totals over subjects.
! Thus4+6+1+2+5+1=19,and so on. Totals for rows T, . for col-
; umns 7', and the grand total are shown. The totals for rows by subjects
*peated-measurement L summed over columns are as follows:
r 2 X 3 = 6treatment g !
= T,
k ; Subjects I
ubject 2 K 1
G, G, g . 16 24 12 24 25 16 17
3 i Rows
8 10 24 E 7 1S 12 12 16 17 79
6 6 15 3 4 T, 23 39 24 36 41 33 196=T.
14 16 ; Here the number 16 in the top left cell is obtained by summing the
3 cells for the first subject over columns; thus 4+ 5+ 7=16. Likewise
; I +4+2=7,and so on. The totals for columns by subjects summed over
. j rows, T .., are as follows:
ibject 4 3
C, Gy ;' ; T o
H Subj:ecls T,
10 2 24 4
- S 9 4 3 1o 3 34
4 7 12 ¢
, Columns 9 14 It 14 16 15 79
14 19 :
3 9 16 9 19 15 15 83
] T, 23 39 24 36 41 33 196=7
bject 6 E:
G, G & Here the values in the left-hand column in the above table are obtained by
; . o : ' summing the cells for the first subject over rows; thus 4+ 1 =5,5+4=09,
! 7+ 2=9, and so on.
8 7 17 - Use is now made of the computational formulas given in Section 17.8.
3 In the present example n= 1. Also a slight notational change has been
15 15 i made. In this example layers are subjects and the symbol S is used instead
E of L. In the formulas to follow S is the same as L in the formulas of Section
down the totals for g 17.8. The factor S has N levels, where N is the number of subjects.
bjects summed over F First we calculate eight quantities which are used in the computation
. Viewing the data = formulas. For this illustrative example these are as follows:
surface of the cube. b
T,-,.., are as follows: ._ _l & — 1 X 19.930 = 1.107.22
cN 2 Th = 3% X 19930 = L107.22 |
4 o = 14286 = 1.190.50 '
RN E ! 2Xx6 - o }
L7 T3 X 6692 = 111533 !
Rc 2 T- - 3
1 R C
Zz x7456—124267
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N |
E 2 T2, —3 3,540 = 1,180.00
7?_2 2 T = 5 2.544 = 1,272.00

E E 2 X,,\ = 1,360.00

|
RCN =36 X 38,416 = 1,067.11
R
In the above computation the quantity E T2 =(HN)*+ (79)*=
C
19.930; ¥ T% = (34)2+ (79)+ (83)2=14.286; and so on. Applying

the computation formulas of Section 17.8, and remembering that L =5,
the required sums of squares are as follows:

ROWS
S~ 1107.22 - 1,067.11 = 40.11
on 2 Tr = gen ~ W10722 7 10O '
COLUMNS
LS T 190,50 — 1,067.11 = 123.39
RN 2 Te. = gen = W10 ol -
SUBJECTS

l N T2
—_ 2 = — = 77
RC 2 T2, RCN 1,115.33 — 1,067.11 = 48.22
R X C INTERACTION
] R C ) 1 R ) I (& " Tz
22T~ en 2T " RN 2T+ T ReN
=1,242.67 — 1,107.22 — 1,190.50 + 1,067.11 = 12.06

R X § INTERACTION

1 er __.I__er __lS T? +_T_
cXEiTh"en 2T "Rre 2" ReN
=1,180.00 — 1,107.22 — 1,115.33 + 1,067.11 = 24.56

C X S INTERACTION

18& L& o L& T
RZZTw—5g 2T "Re 2T RewN
=1,272.00 — 1,190.50 — 1,115.33 + 1,067.11 = 33.28

.
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R X C X § INTERACTION

R C N 2 I R C . l R N ) l C N T'.! + ] K T'.!

Ezzxus—ﬁzz T”_FZET'*_FZZ 8 'mz r..
2

l C 2 I N 2 T 5
TN e .~ me = 1,360.00 — 1.242.67
T RN Z Tt re X T~ men = 1:360.00 — |

— 1,180.00 — 1,272.00 + 1,107.22 + 1,190.50
+ 1L,115.33 — 1,067.11 = 11.27

TOTAL
R C N . T‘Z 109
2 Z 2 XFes — RCN = 1,360.00 — 1,067.11 = 292.89

The analysis-of-variance table for these data is given in Table 19.3.
As indicated in Section 19.5 the appropriate error term for testing row ef-
fects is s,.% for column effects s.2 and for R X C interaction s%.,. The
F ratios are as follows:

2
F,=%-1L9'l'=817 p < .05
. 2
F, —%—63';3730= 18.53  p< .0l
Fr..=jfT’:=?_'—?§=5.34 p < .05

In this illustrative example the column effects are significant at better
than the .01 level, whereas row effects and R X C interaction fall between
the .05 and .01 levels of significance.

Table 19.3

Analysis-of-variance table for illustrative examples of
two-factor experiment with repeated measures

Source of Sum of Degrees of Variance
variation squares freedom estimate
Rows 40.11 | 40.11 = y,2
Columns 123.39 2 61.70= 5.2
Subjects 48.22 s 9.64 = 4.2
RxC 12.06 2 6.03 =y, .2
RXxS 24.56 5 491 =g,2
Cx$ 33.28 10 3.33=4,2
RXCXS 11.27 10 113 =42
Total 292.89 35
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19.7 TWO-FACTOR EXPERIMENTS WITH REPEATED

MEASUREMENTS ON ONE FACTOR

—

e

A not uncommon type of experiment in psychological and educational
research is a two-factor experiment with repeated measurements over one
factor only. To illustrate, consider an experiment involving four different
learning trials under two drug treatments. Two groups of n subjects each
may be used. The first group may be tested on the four learning trials
under the first drug treatment. The second group may be tested on the
four learning trials under the second drug treatment. Designs of this type
are sometimes called mixed designs, but this term should not be confused
with mixed models, where the mixing is with respect to fixed and random
factors rather than repeated- and nonrepeated-measurement factors.

The notation for such an experiment may be illustrated in the particu-
lar case where two experimental groups of three subjects are used with
each subject measured under four experimental conditions. The data may
be represented as follows:

Subjects C, C, Cy C, Means

l Xlll X|2| Xl:ll XI‘I k:,l.l

';. R! 2 Xll2 X|22 XI.'lZ Xl42 /\:1.2

g 3 Xll.'l XIZ.’C XI.'H{ Xl‘:l Xl..'l
o _ _ N _ _

Means X, X, Xia. Xia, X

4 X2|4 X'I?‘ X?:N X‘I’O«I g'.’.l

:_ R, 5 Xas Xops Xozs Xas /\_'z.s

3 6 Xy1e X Xz X Xya
o N _ _ _ -

Means X, X, Xog. Xy Xy,

Means X. X, X X, X..

Here triple subscripts are used. The first subscript identifies the
row or group to which the subject belongs, the second subscript identifies
the column or the level of the repeated measurement, the third subscript
identifies the subject. For example, X,,, is a measurement for the fourth
subject in the second group at the first level of the repeated measurement.

For this type of experimental design the total sum of squares may be
partitioned into two parts, a between-subjects and a within-subjects sum of
squares. The between-subjects sum of squares can be further partitioned
into two parts, a row sum of squares and a subjects-within-groups sum of
squares. Denote this latter term by S/R. The within-subjects sum of
squares can be further partitioned into three parts, a column sum of
squares, a row-by-column interaction, and a third part which is a column-
by-subject interaction pooled over groups or rows. Denote this latter term
by (§ X C)/R. Thus, in effect, the total sum of squares is partitioned into
five separate sums of squares. These sums of squares with the associated
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number of degrees of freedom and variance estimates are shown in Table
19.4.

Some comment on the sums of squares in Table 19.4 is appropriate.
The meaning of the row, column, and interaction sums of squares is obvi-
ous. These are concerned with variability due to the main effects and the
interaction between the main effects. The subjects-within-groups sum of
squares, S/R, is simply the variability among subjects for the first group,
added to the variability among subjects for the second group, and so on for
all levels of R. It may be viewed as the variability among subjects with
the variability due to row treatment effects, as it were, removed. The
(C X S)/R term is a column-by-subject interaction for the first group, added
to the column-by-subject interaction for the second group, and so on for all
levels of R.

The numbers of degrees of freedom associated with row, column, and
R X C interaction sums of squares are R— 1, C— 1, and (R — 1)(C — 1),
respectively. The S/R term has associated with it n— 1 degrees of
freedom for each group, and for R groups the number of degrees of
freedom is R{(n—1). The (C X S)/R term involves the summing of
the C X § interaction over R groups or levels. The number of degrees
of freedom associated with each level is (n— 1)(C — 1): consequently
the total number of degrees of freedom associated with this term is
R(n—1)(C—1).

Table 19.4

Analysis of variance for two-factor experiments with repeated measurements
on one factor

Source of Variance
variation Sum of squares df estimate
K n - -
Between subjects C 2 2 (X, — X P Rn—1 syt
K _ _
Rows nC E (X, — X% R—-1 52
R n - -
SIR C E 2 (X — X R(n—1 Shr
¢ K n
Within subjects SIS X — X2 Rn(C -1 5.2
¢
Columns nR z (X, —X.» C-1 5ot
K O _ _ - _
RXxC IIEE(X,,-_—'X,.__X,,-A+X“,)z (R—INC—-1H Spet
¢ K »n - - -
(C x $HR SIS X = X — Koo + X, Rin—INC— 1 Sr
H C n "
Total EZE(X"'_X---F RCn—1
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The expectations of the variance estimates or mean squares for a two-
factor experiment with repeated measurements on one factor, and assum-
ing the row and column treatment variables to be fixed. are as follows:

ROWS, s§,° o+ Col+ nCa,?

SIR, 52, gl+ Col

COLUMNS, §.* a2+ o’ + nRay?

R XC, s, a2+ ot + oyt
':<

(C X S)IR, s, ot ond |

The quantities o,* o, o’ and ¢ are variance components as de-
scribed in Section 16.6. The quantity o? is a variance component which is
due to the variation of subjects within groups.

Examination of the above expectations indicates that the correct error
term for testing row effects is the S/R variance estimate. The correct error
term for testing column and R X C interaction effects is the (C X S)IR
variance estimate.

s

L

19.8 COMPUTATION FORMULAS FOR TWO-FACTOR € |
EXPERIMENTS WITH REPEATED MEASUREMENTS
ON ONE FACTOR

Computation formulas may readily be obtained to compute the required
sums of squares. As previously the sum of all nRC observations will be
denoted by T. We denote the row and column totals by 7, and T,
respectively. The total for the rth row and cth column summed over sub-
jects is T,... The total for any subject in any row summed over columns is
T,.. The total for n subjects for any group summed over columns is 7.
Given this notation, the computation formulas are as follows:

BETWEEN SUBJECTS

R n
[19.1] 33 Th—re
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19.9 ILLUSTRATIVE EXAMPLE OF A TWO-FACTOR EXPERIMENT WITH REPEATED MEASUREMENTS ON ONE FACTOR

ROWS
o R .
[19.2] TZ T;..—m:
SIR
[19.3] ?22 T,—FZ T?.

WITHIN SUBJECTS

kR C
(19.4) ¥ Xﬁ,.;—?zzTﬁ.x

COLUMNS
l (& . TZ
[19.5] ”—2 T:. TRC
R XC
& &, L&, L&, T
[19.6] a2 2T 2T~ 2Tt oge
SCIR

R C n R C R
(19.] S S X~ IS T S T +—= S TE.

‘TOTAL.

[19.8) ZZEX%"’_W

In practical computation a number of these terms can be obtained by

simple subtraction.

19.9 ILLUSTRATIVE EXAMPLE OF A TWO-FACTOR
EXPERIMENT WITH REPEATED MEASUREMENTS
ON ONE FACTOR

Table 19.5 shows illustrative data for a two-factor experiment with re-
peated measurements on one factor. Two groups of four subjects were
used. Each subject was measured under five experimental conditions.
The totals required for computational purposes are also shown in this table.
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Table 19.5

liustrative data for a two-factor experiment with repeated measurements
on one factor ’

Subjects ¢ G G G G T, .
- 1 27 6 7 9 3
S R 2 4 3 7 12 14 40
o 1
= 3 7 6 4 12 10 19
© 4 1 3 3 6 6 19
T, 14 19 20 37 39 T, =129
e I 4 4 71 9 1 25
&, 2 0 12 12 12 16 62
e 3 8 7 8 12 10 45
o 4 s 7 6 7 8 13
T, 27 30 33 40 35 T, = 165
T. 41 49 53 77 74 T =294

T2 2 Th=4EN*+ (40" + - - -+ (33)2] = 2,405.20

R
—4%5— [(129)% + (165)*] = 2,193.30
¢
T!RT 2 T3 =Ix2 )l( 3 [(41)2 + (49)* + - - -+ (74)*] = 2,287.00

A~

\g|
o
I

S S Th =H{(14) + (19) + - - -+ (35)?] = 2.347.50
C
)

i Xti=(2)2+ ()24 - -+ (8)*=2,664.00
T: _ (294)*
nRC ~ 4x2X5

Applying the computation formulas given in Sec. 19.8, the required
sums of squares are as follows:

= 2,160.90

BETWEEN SUBJECTS

R n 2
?l 2 2 T, — nZC = 2,405.20 — 2,160.90 = 244.30

ROWS

l R 2

, T
Prel E T: — “RC = 2,193.30 — 2,160.90 = 32.40




D OTHER EXPERIMENTAL DESIGNS 19.9 ILLUSTRATIVE EXAMPLE OF A TWO-FACTOR EXPERIMENT WITH REPEATED MEASUREMENTS ON ONE FACTOR 319

SIR
 measurements _l_ R n B _1_ P . _ -
oY Tho— —=> T, =2.405.20 = 2,193.30 = 211.90
7<I'.S
WITHIN SUBJECTS
31
V tad C l R n
40 - 0 . B B
39 & E Z S X, =33 Th=2,664.00 — 2.405.20 = 258.80
19 ? '
T, =129 COLUMNS
- 4 c TZ
> » 2 - = 2,287.00 — 2,160.90 = 126.10
62 b
45
33 3 RXC
T, = 165 i TRE o, 1k T-
, ] " 2 2 T%. - 2 - ”R E
- = =2,347.50 - 2,193.30 - 2,287.00 +2,160.90 = 28.10
3 SCIR
-alculated as follows: 4

.'_ C n . R n , | & € \ .

.30
TOTAL

74)%] = 2,287.00 n Tz
2 z z Xii— = 2,664.00 — 2,160.90 = 503.10
= 2,347.50 . . . .
The analysis-of-variance table for these data is shown in Table 19.6.
The degrees of freedom for rows are R—1=2—1=1; for columns
54.00 E are, C— 1 =5—1=4; and for R X C interaction are, (R — IXC — 1) =
. k| Table 19.6
c. 19.8, the required ; ' Analysis of variance for the data of Table 19.5
Sum of Degrees of Variance
' Source squares freedom estimate
f_ Between subjects 244.30
"' g Rows 32.40 I 32,40 =y,
E ) SIR 211.90 6 35.32 =42
=1 4 K] o
0 = 244.30 & 1 Within subjects 258.80
¥ Columns 126.10 4 31.53 = 4,2
3 RXC 28.10 4 701"\”
SCIR 104.60 24 436=4s2,
i Total 503.10 39
.%




320 REPEATED-MEASUREMENT AND OTHER EXPERIMENTAL DESIGNS

2—1)(5—1)=4. The S/R term is the variation within subjects
summed over groups, and the degrees of freedom are R(n—1)=
2(4 — 1) = 6. The SC/R term is the subject-by-column interactions summed
over rows, and the degrees of freedom are R(n— ncCc—-1)=
24— 1)(5—1) =24

The appropriate error term for testing row effects is the S/R variance
estimate. The appropriate error term for testing column effectsand R X C
interaction is the SC/R variance estimate. The F ratios are as follows:

st 3240
st 31.53
=t = " =72
Fo=i—=T5 =13 p<0l
_ st _ 2810 _
Fo=t—=2g=64  p<ol

In this illustrative example the row effects are not significant, whereas the
column effects, row-by-column effects, and row-by-column interaction
are significant at better than the .01 level.

19.10 ASSUMPTIONS UNDERLYING REPEATED-
MEASUREMENT DESIGNS

A basic assumption in the analysis of variance is the homogeneity of
variance assumption. In, for example, a simple analysis of variance in-
volving k independent groups this assumption may be stated in the form
ol=a2=- - -=a2=0c® Ithasbeen shown that reasonable violations
of this assumption will not seriously bias the F test. The analysis-of-
variance procedures are said to be robust with respect to violations of the
homogeneity of variance assumption. In the analysis of variance involving
repeated measurements, assumptions are made not only regarding the
homogeneity of variance but also regarding the homogeneity of covariance.
To illustrate, in a one-factor experiment with repeated measurements N
subjects are measured under C treatments. All the covariances, ryss;,
between pairs of treatments may be calculated. The homogeneity of
covariance assumption is that all r;s;s; are éstimates of the same population
covariance. If, for example, repeated measurements were made for N sub-
jects on four conditions, the following covariance table, or matrix, might be

calculated.
1 2 3 4
.2 . . .
1 Rl LAPLIEH LAELIEH] F1a8154
2 ri28 8 5 FyS23y T2482%4
. Y o 4 v
3 T35 5y T235233 8y F348384
4 FiaSi84 r245284 V348354 s
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In this table variances appear along the main diagonal, and covariances ap-
pear on either side of the main diagonal. The homogeneity of variance-
covariance assumption means that the variances and covariances in the
population sampled are as follows:

! 2 T3 4
! o po? pa? pot
2 pot a? pat po?
3 pat pat o? pa?
4 pot po* pa ot

Here p is the value of the population correlation coefficient, and po? is the
population covariance. If the homogeneity of variance-covariance as-
sumption is not satisfied in repeated measurement designs, the F test is
positively biased. This means that more significant differences will be
found, and more null hypotheses rejected, than would have been the case
had the F test not been biased.

A method exists for testing the homogeneity of variance-covariance as-
sumption. This method is due to Box (1953), and a description of it is
foupd in more advanced texts such as Winer (1971). Application of the
procedure involves considerable arithmetical labor, and the computation
required is best done on a computer.

If the homogeneity of variance-covariance assumption is not satisfied,
Box (1954) has suggested a procedure which for a one-factor experiment
with repeated measurements uses the same F ratio, F,. = s’/s.* that
would be appropriate if the assumption had been satisfied. Different
degrees of freedom are, however, used on entering the F table. Instead of
(C—1) and (R— 1)(C — 1), the Box procedure uses ! and (R —1).
Since in this design R is the number of subjects, (R — 1) = (N — 1}. This
is a conservative procedure and is based on a maximal departure of the ob-
served covariance matrix from the homogeneity assumption. This proce-
dure in most situations will be negatively biased and will lead to too few
significant differences. Since the investigator will usually wish to proceed
without applying a proper test of the homogeneity of the variance-
covariance assumption, the following has been suggested. Test for column
effects by using the F test with | degree of freedom associated with the
numerator and (R — 1) with the denominator. If the result is significant at
the desired level, no further test is required, because this is a conservative
test that works against obtaining a significant difference. If the result is not
significant, test the F ratio by using (C — 1) and (R — 1)(C — 1) degrees
of freedom. I[f this is not significant, no further test is required, because
this is a liberal procedure that works in the direction of too many signifi-
cant differences. If the conservative procedure indicates that the F ratio is
not significant, and the liberal procedure indicates that it is significant, then
a test of the homogeneity of variance-covariance assumption is required.

When the Box procedure as described above is applied to tests used in
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a two-factor experiment with repeated measurements, row, column, and in-
teraction effects are tested by using an F ratio with | degree of freedom as-
sociated with the numerator and N — | degrees of freedom associated with
the denominator. In a two-factor experiment with repeated measurements
on one factor only, no adjustment is made in the number of degrees of
freedom used in the F ratio for testing row effects. because repeated
measurements are not involved in the row factor. Thus the row effect is
tested with R — | and R(n — 1) degrees of freedom associated with the
numerator and denominator, respectively, of the F ratio. Adjustments
should, however, be made in the degrees of freedom used in the F ratios
for column and R X C interaction effects. Here, using the Box procedure,
the column effect is tested with | and R(n — 1) degrees of freedom as-
sociated, respectively, with the numerator and denominator of the F ratio.
The R X C interaction is tested by using (R — 1) and R(n — 1) degrees of
freedom. Here again, because of the conservative nature of these tests, if
a significant result is found by using the F test with adjusted degrees of
freedom, the result is significant « fortiori, regardless of the homogeneity of
variance-covariance assumption.

19.11 RANDOMIZED BLOCK DESIGNS

Consider a one-way classification experiment of the type described in
Chapter 15, where N subjects are assigned at random to & treatment
groups. Assume that the groups are of equal size with n subjects in each

of the k groups. Between-groups and within-groups sums of squares are
obtained with A — 1 and N — k degrees of freedom, respectively. The
precision of such experiments can be increased, sometimes substantially, 3

by grouping the subjects into a number of blocks, using a variable that is
known to be correlated with the dependent variable. For example, assume
that four different methods of learning an artificial language are under in-
vestigation and 40 subjects are available. In the usual one-way classifica-
tion experiment these 40 subjects would be allocated to the four methods :
at random resulting in 4 groups of 10 subjects each. Measures of scho- 3
lastic achievement may, however, be available, and this variable may be A
thought to be correlated with the performance of subjects in learning the
artificial language. Subjects may be divided into two groups, or blocks, of
20 subjects each. One group may be a high, the other a low, scholastic
achievement group. The 20 subjects in each block may then be assigned
at random to the four methods, resulting in eight groups of five subjects.
Such an experiment is called a randomized block experiment. The essence :
of the idea of a randomized block experiment is that subjects can be
grouped into blocks according to a known classification variable, which is
correlated with the dependent variable. Subjects within blocks are then
assigned at random to the k treatments. The analysis of data for such an k
experiment presents no problems. In the example above the analysis of 3
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data is the same as for a double-classification factorial experiment as
described in Chapter 16. Four sums of squares are obtained. Given k
treatments and B blocks the degrees of freedom associated with treat-
ments, blocks, interaction, and within-cells sums of squares are kA — I,
B—1,(k—1)(B—1),and N — Bk, respectively.

What is the purpose of a randomized block experiment? The primary
purpose is to reduce the size of the error term used in the denominator of
the F ratio, which for the fixed model is the within-cells mean square. The
relative efficiency of the experiment is thereby increased in relation to the
one-way classification experiment. If the blocking variable has a substan-
tial correlation with the dependent variable, the sums of squares associated
with blocks may prove to be of some appreciable size: also an interaction
term of some magnitude may be found. The effect of this will be to reduce
the size of the within-group sum of squares and the within-group mean
square and, thereby, increase the likelihood of obtaining a significant dif-
ference for the main effect.

The reader should note that in the one-way classification experiment
the number of degrees of freedom associated with the error term, the
within-groups mean square, is N — k, whereas in the randomized block
experiment the number of degrees of freedom associated with the error
term is N — Bk. Thus in the randomized block experiment a loss in
degrees of freedom associated with the error term occurs, which must be
compensated for by the sum of squares associated with blocks and interac-
tion. An informative discussion of this point will be found in Myers
(1972). Myers’ treatment of the subject shows that the relative efficiency
of the randomized block experiment in relation to the usual one-way clas-
sification experiment will be greater than 1 whenever the F test of the com-
bined block and interaction effects exceeds 1. The relative efficiency will
increase as the sum of squares associated with blocks and interaction ef-
fects increases.

Because the degrees of freedom associated with the error term in a ran-
domized block design are N — Bk, the power of the F test will decrease as
the number of blocks increases. Also, as the number of blocks increase
the within-cells sum of squares decreases. These are opposing effects
which suggest that in a randomized block experiment some optimum
number of blocks exists. This topic has been investigated by Feldt and
Mahmoud (1958). The reader will find Myers® (1972) discussion of this
topic helpful. The gist of the matter is that the optimum number of blocks
is related to the correlation between the blocking variable and the depen-
dent variable, sample size N, and the number of treatment levels k. The
optimum number of blocks increases with increase in the correlation and
sample size N and decreases with increase in the number of treatment
levels. 1In the design of a randomized block experiment investigators
should inform themselves of these matters and keep them in mind.

The blocking variable is usually a classification variable which is char-
acteristic of the subjects and is in no way under the control of the inves-
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tigator. Examples are sex, socioeconomic level, scholastic achievement,
1Q, litter membership, strain, and so on. A blocking variable may be of
the nominal, ordinal, or interval-ratio type. With ordinal or interval-ratio
variables arbitrary groupings (such as high, medium, and low) are used as
blocks.

In some experiments the blocking variable is of no interest to the in-
vestigator and is used purely for the purpose of error reduction. In other
experiments the blocking variable may be of considerable intrinsic interest
in itself and may be an integral part of the experiment. In such experi-
ments error reduction may not be a matter of concern. Such experiments
are in effect ordinary factorial.experiments, where one or more of the vari-
ables are classification rather than treatment variables.

Randomized block experiments are on occasion conducted with one
observation per cell. To illustrate, let the treatment variable be four dif-
ferent dosages of a drug intended to alleviate depression and let the
blocking variable be a score on a depression scale administered prior to the
administration of any drug. Let the dependent variable be a measure of
motor performance, such as reaction time. If 20 subjects were available,
these subjects could be divided into 5 blocks of 4 subjects each. The four
subjects with the highest scores on the depression scale would constitute
the first block, the next highest subjects the second block, and so on.
Within each block subjects are assigned to treatments at random. The
result is a 5 X 4 table of numbers with one observation per cell. Such data
are analyzed using the two-way classification analysis with one observation
per cell. The total sum of squares is partitioned into treatment, block, and
interaction sums of squares. Care must be exercised in the choice of error
term in applying the F ratio. Frequently, as in the illustrative example
above, the blocking variable may be viewed as a random variable and the
treatment variable as a fixed variable; that is, the model is mixed. The
proper error term for testing treatment effects is the interaction mean
square. No test of the effects due to blocks can be made. In general in
randomized block designs investigators must concern themselves with
whether the blocking variable may be viewed as fixed or random, and gov-
ern themselves accordingly in the choice of the appropriate error term.
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19.12EXPERIMENTS WITH NESTED FACTORS

Consider an experiment which is intended to investigate two different
drugs, A and B, in the treatment of depressed patients. The dependent
variable is a measure of improvement under the drug. Assume that the pa-
tients are under treatment by three different therapists. Such an experi-
ment might be conducted as a 2 X 3 factorial experiment with six groups of
n experimental subjects. All six treatment combinations are present in the
experiment. In such a factorial experiment both factors are said to be
crossed. In the example above each of the two drugs crosses, as it were,




