| | VARIABLESYNT | н | | | | | | |---------------------------|-----------------------|------------------------|------------------|------------------|-----------------|---------------------------|----------------| | COVARIATE | В | BETA | STD. ERR. | T-VALUE | SIG. OF | T LOWER .95 CI | L UPPER .95 CI | | NTEL | .0555153073 | .4727752433 | .05165 | 1.07475 | 20 | 3704814 | 4 1501 | | ONOBV | .2008178054 | | .24128 | .83231 | .20 | 928334 | | | ONRMT | | .2648440705 | .47795 | . 29520 | . 40 | 928334
98179 | | | 0B | | 9994055945 | .33236 | | | | | | IÌ | 0015680423 | | | 66986 | | | | | 12 | 0009030738 | - 2073789045 | .00234. | 20380 | | | | | 13 | .0030798107 | 1.2548388165 | .00314 | .98169 | . 33 | | | | EPENDENT | VARIABLEEVAL | | | | | | 0050 | | OVARIATE | В | BETA | STD. ERR. | T-VALUE | SIG. OF | T LOWER .95 C | L UPPER .95 C | | NTEL | 0094648415 | 0700004101 | | | | | | | ONOBV | ~.1937798157 | 7413104806 | .05701 | 16602 | .86 | | | | ONRMT | | .7901962055 | . 26629 | 72770 | . 47 | | 3 .3405 | | OB | | 8648268789 | .52750 | .81424 | .41 | | 1.4880 | | ĬĬ | | 1.0339290659 | .36682 | 77233 | . 44 | 3 –1.0193 | 7 .4527 | | 12 | 0032614042 | 7740404055 | .00258 | . 92057
66690 | .36 | 20028 | .0075 | | 13 | 0035330033 | 1.0115178798 | .00489 | 66690 | . 50 | .0028
80130
80044 | 7 .0065 | | | .0020000022 | 1.0113176796 | .00346 | .73156 | . 46 | i800 44 : | .0094 | | | FOR SYNTH ADJUS | TED FOR 7 COVAR | IATES | - | | · | | | ONSTANT | | | | | | | UDDED OF O | | ONSTANT
PARAMETER
1 | C0EFF
-4.052058633 | . STD. ERF
5 5.2152 | R. T-VAL
4776 | UE SIG
96 | . 0F T L | OWER .95 CL
-14.51720 | 6.41309 | | PARAMETER
1 | | | 776 | UE SIG
96
 | . 0F T L
441 | .0WER .95 CL
-14.51720 | 6.41309 | | PARAMETER 1 STIMATES | -4.0520586339
 | | 776 | UE SIG
96
 | . OF T L
441 | OWER .95 CL
-14.51720 | 6.41309 | | PARAMETER
1 | -4.0520586339 | ED FOR 7 COVARIA | TES | JE SIG | | -14.51720 | 6.41309 | All of the output related to multivariate significance tests that can be obtained by using the PRINT phrase as described in Section 1.33 is also available in the multivariate regression analysis. ## 1.41 Canonical Analysis MANOVA can also be used to obtain the canonical correlation between the dependent and independent variables entered into the multivariate regression model. Canonical correlation analysis obtains the linear combinations $u_i = \mathbf{a}_i$ 'Y and $v_i = \mathbf{b}_i$ 'X ($i = 1, 2, ... \min(p, q)$) such that the sample correlation between u_i and v_i , is maximized. The sample correlation between u_i and v_i is greatest among all linear combinations uncorrelated with u_i and v_i , and so on. The \mathbf{a}_i and \mathbf{b}_i are the canonical coefficients for the dependent and independent variables, respectively, and the pairs of linear combinations u_i and v_i are called the canonical variates. The format of the PRINT subcommand requesting canonical analysis is PRINT=DISCRIM(output list)/ The output list may include requests for 1 The raw canonical coefficients. If PRINT=DISCRIM(RAW)/ is specified, the raw canonical coefficients for the dependent variables and the independent variables are produced. For Figure 1.40a, the output in Figure 1.41a is obtained. ## Figure 1.41a RAW CANONICAL COEFFICIENTS FOR DEPENDENT VARIABLES FUNCTION NO. VARIABLE 1 SYNTH .40444 EVAL .22637