The first DESIGN specification requests an analysis of variance for this experiment (Figure 1.26b). Figure 1.26b | TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES | | | | | | | | | | |--|----------------|----|--------------|------------|-----------|--|--|--|--| | SOURCE OF VARIATION | SUM OF SQUARES | DF | MEAN SQUARE | F | SIG. OF F | | | | | | RESIDUAL | 8909.36190 | 43 | 207.19446 | | | | | | | | CONSTANT | 461120.05556 | 1 | 461120.05556 | 2225.54237 | 0.0 | | | | | | REPLICS | 3836.61111 | 3 | 1278.87037 | 6.17232 | .001 | | | | | | BLOCKS WITHIN REPLICS | 2836.33333 | 8 | 354.54167 | 1.71115 | . 123 | | | | | | A | 1116.02778 | 2 | 558.01389 | 2.69319 | .079 | | | | | | В | 253.69444 | 2 | 126.84722 | .61221 | .547 | | | | | | C | 868.05556 | 1 | 868.05556 | 4.18957 | .047 | | | | | | A BY B | 1129.34921 | 4 | 282.33730 | 1.36267 | . 263 | | | | | | A BY C | 2995.02778 | 2 | 1497.51389 | 7.22758 | .002 | | | | | | B BY C | 423.52778 | ž | 211.76389 | 1.02205 | . 368 | | | | | | A BY B BY C | 1015.95556 | 4 | 253.98889 | 1.22585 | .314 | | | | | The second and third analyses give the AB and AC two-way means adjusted for the block effects (Figure 1.26c). For more information about the use of CONSPLUS to obtain marginal means and summary tables, see Section 1.50. Figure 1.26c | PARAMETER | COEFF. | STD. ERR. | T-VALUE | SIG. OF T | LOWER .95 CL | UPPER .95 CL | |-----------------------------|---|---------------------------------|----------------------------------|-------------------|--|--| | 12 | 72.1964285714 | 6.02764 | 11.97757 | 0.0 | 60.10109 | 84.29176 | | 13 | 73.2261904762 | 6.02764 | 12.14841 | 0.0 | 61.13086 | 85.32152 | | 14 | 79.7023809524 | 6.02764 | 13.22283 | 0.0 | 67.60705 | 91.79771 | | 15 | 86.7738095238 | 6.02764 | 14.39600 | 0.0 | 74.67848 | 98.86914 | | 16 | 87.8035714286 | 6.02764 | 14.56684 | 0.0 | 75.70824 | 99.89891 | | 17 | 79.4226190476 | 6.02764 | 13.17641 | 0.0 | 67.32729 | 91.51795 | | 18 | 89.0297619048 | 6.02764 | 14.77026 | 0.0 | 76.93443 | 101.12510 | | 19 | 74.3452380952 | 6.02764 | 12.33406 | 0.0 | 62.24990 | 86.44057 | | 20 | 77.7500000000 | 6.02764 | 12.89892 | 0.0 | 65 . 6546 7 | 89.84533 | | ONSPLUS A | AND C | | | | | | | PARAMETER | COEFF. | STD. ERR. | T-VALUE | SIG. OF T | LOWER .95 CL | UPPER .95 CL | | PARAMETER | | | | SIG. OF T | LOWER .95 CL
54.13406 | 71.03261 | | PARAMETER
12 | COEFF.
62.5833333333
87.500000000 | STD. ERR.
4.21611
4.21611 | T-VALUE
14.84385
20.75372 | | | 71.03261
95.94927 | | PARAMETER
12
13 | 62.5833333333 | 4.21611 | 14.84385 | 0.0 | 54.13406 | 71.03261
95.94927
92.78261 | | PARAMETER
12 | 62.583333333
87.5000000000 | 4.21611
4.21611 | 14.84385
20.75372 | 0.0 | 54.13406
79.05073
75.88406
76.55073 | 71.03261
95.94927
92.78261
93.44927 | | PARAMETER
12
13
14 | 62.583333333
87.500000000
84.3333333333 | 4.21611
4.21611
4.21611 | 14.84385
20.75372
20.00264 | 0.0
0.0
0.0 | 54.13406
79.05073
75.88406 | 71.03261
95.94927
92.78261 | ## 1.27 Split-plot Designs In many factorial designs, it may not be possible to completely randomize the assignment of treatments to the experimental unit. Consider, for example, an experiment to compare three varieties of wheat (factor A) and two different types of fertilizer (factor B). Three locations are selected as blocks. Three levels of A are randomly assigned to plots of equal area within each block. After A is assigned, each plot is "split" into halves (called subplots) to receive the random assignment of B. What is the difference between a complete 3×2 factorial and the 3×2 split-plot design? In a 3 × 2 factorial, each block is divided into six subplots to receive the random assignment of treatment combinations of A and B. In the split-plot design, two treatment combinations that have the same level of A are always in the same plot. If the subplot is considered the experimental unit, the plot is a "small" block of size 2. The differences among these "small" blocks are the differences between levels of A, since the main effects of A are confounded. A split-plot design is a design in which certain main effects are confounded. Intuitively, the variation of plots within A should be used as the error term to test for the main effects of A. The effects of plot within A can be partitioned into two parts. One is the block effects and another is the block and A interaction. Thus the model for a split-plot design is $$Y_{ijk} = \mu + \alpha_i + \beta_k + (\alpha\beta)_{ik} + \gamma_j + (\alpha\gamma)_{ij} + \epsilon_{ijk}$$ where α_i is the A effect, β_k is the block effect, $(\alpha \beta)_{ik}$ is the interaction of A and block and is the error term for testing A, γ_i is the B effect, $(\alpha \gamma)_{ij}$ is the AB interaction, and ϵ_{ijk} is the residual used as the error term for testing B and AB. Another model is $$Y_{ijk} = \mu + \alpha_i + \beta_k + (\alpha\beta)_{ik} + \gamma_j + (\alpha\gamma)_{ij} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijk}$$