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The first DESIGN specification requests an analysis of variance for this experiment (Figure
1.26b).

| Figure 1.26b

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION . SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 8909.36190 43 207.19446
CONSTANT 461120.05556 1 461120.05556 2225.54237 0.0
REPLICS 3836.61111 3 1278.87037 6.17232 .001
BLOCKS WITHIN REPLICS 2836.33333 8 354.54167 1.71115 123
1116.02778 2 $68.01389 2.69319 .079
B 253.69444 2 126.84722 .61221 .547
C 868.05556 1 868.05556 4.18957 .047
A BYB ' 1129.34921 4 282.33730 1.36267 .263
A BY C 2995.02778 2 1497.51389 7.22758 .002
B BY C 423.52778 2 211.76389 1.02205 . 368
A BY B BY C 1015.95556 4 253 .98889 1.22585 .314

The second and third analyses give the AB and AC two-way means adjusted for the block
effects (Figure 1.26c). For more information about the use of CONSPLUS to obtain marginal
means and summary tables, see Section 1.50.

Figure 1.26¢c

CONSPLUS A AND B

PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
12 72.1964285714 6.02764 11.97757 0.0 60.10109 84.29176
13 73.2261904762 6.02764 12.14841 0.0 61.13086 - 85.32152
14 79.7023809524 6.02764 13.22283 0.0 67.60705 91.79771
15 86.7738095238 6.02764 14.39600 0.0 74.67848 98.86914
16 87.8035714286 6.02764 14.56684 0.0 75.70824 99.89891
17 79.4226190476 6.02764 13.17641 0.0 67.32729 91.51795
18 89.0297619048 6.02764 14.77026 0.0 76.93443 101.12510
19 74.3452380952 6.02764 12.33406 0.0 62.24990 86.44057
20 77.7500000000 6.02764 12.89892 0.0 65.65467 89.84533

CONSPLUS A AND C

PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
12 62.5833333333 4.21611 14.84385 0.0 54.13406 71.03261
13 87.5000000000 4.21611 20.75372 0.0 79.05073 95.94927
14 84.3333333333 4.21611 20.00264 0.0 75.88406 92.78261
15 85.0000000000 4.21611 20.16076 0.0 76.55073 93.44927
16 82.7500000000 4.21611 19.62709 0.0 74.30073 91.19927
17 78.0000000000 4.21611 18.50046 0.0 69.55073 86.44927

1.27 Split-plot Designs

In many factorial designs, it may not be possible to completely randomize the assignment of
treatments to the experimental unit. Consider, for example, an experiment to compare three
varieties of wheat (factor A) and two different types of fertilizer (factor B). Three locations are
selected as blocks. Three levels of A are randomly assigned to plots of equal area within each
block. After A is assigned, each plot is ““split” into halves (called subplots) to receive the random
assignment of B. What is the difference between a complete 3 X 2 factorial and the 3 X 2 split-plot
design? In a 3 x 2 factorial, each block is divided into six subplots to receive the random
assignment of treatment combinations of A and B. In the split-plot design, two treatment
combinations that have the same level of A are always in the same plot. If the subplot is considered
the experimental unit, the plot is a “small” block of size 2. The differences among these “‘small”
blocks are the differences between levels of A, since the main effects of A are confounded. A
split-plot design is a design in which certain main effects are confounded.

Intuitively, the variation of plots within A should be used as the error term to test for the main
effects of A. The effects of plot within A can be partitioned into two parts. One is the block effects
and another is the block and A interaction. Thus the model for a split-plot design is

Yoo = 1+ ai + B + (aB)u + v + (ay)y + €

where o, is the A effect, B, is the block effect, (aB)x is the interaction of A and block and is the
error term for testing A, v; is the B effect, (ay);; is the AB interaction, and e is the residual used as
the error term for testing B and AB.

Another model is

Yie = m+ o+ B + (@Bl + v + (av)y + (BY)i + (aBy)in + € :




