Note that the model does not include A BY B BY C, which is confounded with BLOCK W REPLIC

It is possible to test the ABC interaction if some interaction other than ABC is confounded in some of the replications. One possible layout would be that given in Table 1.26c.

Table 1.26c

Replication 1 Block		Replication 2 Block		Replication 3 Block		Replication 4 Block	
1	2	1	2	1	2	1	2
abc	ab	ь	ab	ac	ab	ac	a
a	ac	а	С	(1)	bc	ab	bc
b	bc	ac	(1)	abc	а	ь	abc
c	(1)	bc	abc	b	С	с	(1)

In replication 1, ABC is confounded with blocks. In replication 2, the AB interaction is confounded with blocks. For replications 3 and 4, AC and BC are confounded.

For this example, A, B, and C are free of the block effects and three-fourths information for AB, AC, BC, and ABC can be obtained, since the unconfounded interactions can be estimated in three out of four of the replications. Hence we say AB, AC, BC, and ABC are partially confounded with blocks. The MANOVA specifications for this $2 \times 2 \times 2$ factorial with partial confounding are

```
MANOVA

Y BY REPLIC(1,4), BLOCK(1,2),A, B, C(1,2)/
DESIGN=REPLIC, BLOCK W REPLIC, A, B, C, A BY B, A BY C,
B BY C, A BY B BY C/
```

More complex confounding designs can be found in Davies (1954) and Cochran and Cox (1957).

Another Example The following example is taken from Cochran and Cox (1957, p. 205). The data are a $3 \times 3 \times 2$ factorial in blocks of six units with three blocks in each of four replications. Interactions AB and ABC are partially confounded with blocks. The SPSS commands for this analysis are given in Figure 1.26a.

Figure 1.26a

```
CONFOUNDING IN MIXED SERIES.
CONFOUNDING IN MIXED SERIES. 3*3*2 FACTORIAL
FROM COCHRAN AND COX(1957) P. 205
SECOND ANALYSIS GIVES AB TWO-WAY TABLE ADJUSTED FOR BLOCK
THIRD ANALYSIS GIVES AC TWO-WAY TABLE ADJUSTED FOR BLOCKS
RUN NAME
COMMENT
COMMENT
COMMENT
                                       FACTOR A: 8-8-6 FERTILIZER APPLIED IN THE ROW,
3 LEVELS -- 0 (NONE), 1 (200 LB.), 2 (400 LB.)
FACTOR B: MEALS, 3 LEVELS -- 0 (NONE), 1 (TUNG MEAL),
2 (COTTONSEED MEAL),
FACTOR C: 8-8-6 FERTILIZER APPLIED AS SIDE-DRESSING,
COMMENT
COMMENT
COMMENT
COMMENT
VARIABLE LIST
                                       2 LEVELS -- 0
REPLICS, BLOCKS, A, B, C, DEP
                                                                                                          (NONE), 1 (200 LB.).
INPUT MEDIUM
INPUT FORMAT
                                       CARD
FIXED(2X,5F1.0,8X,F3.0)
N OF CASES
                                       72
DEP BY REPLICS(1,4), BLOCKS(1,3), A(0,2), B(0,2), C(0,1)/
DESIGN = REPLICS, BLOCKS WITHIN REPLICS, A, B, C,
A BY B, A BY C, B BY C, A BY B BY C/
DESIGN = REPLICS, BLOCKS W REPLICS, CONSPLUS A AND B/
DESIGN = REPLICS, BLOCKS W REPLICS, CONSPLUS A AND C/
READ INPUT DATA
     11020
11100
                                           70
80
     11121
11201
11210
                                          86
74
86
67
     12010
                                           55
      42210
                                           6<del>6</del>
                                           90
58
81
67
      43001
43010
     43100
43121
43211
43220
                                           68
FINISH
```