Figure 1.24a

```
4*4*3 FACTORIAL IN RANDOMIZED BLOCKS.
4*4*3 FACTORIAL IN RANDOMIZED BLOCKS WITH
COVARIATE. FROM COCHRAN AND COX(1957) PAG
REPLIC, LENPER, CURRENT, NTREAT, Y, X
RUN NAME
COMMENT
VARIABLE LIST
INPUT MEDIUM
INPUT FORMAT
                                       CARD
                                       FIXED(4F1.0,F2.0,F3.0)
N OF CASES
                                      96
(LENPER EQ 5) LENPER = 4
(NTREAT EQ 3) NTREAT = 2
(NTREAT EQ 6) NTREAT = 3
Y BY REPLIC(1,2), LENPER(1,4), CURRENT(1,4),
NTREAT(1,3) WITH X/
DESIGN = REPLIC,NTREAT,LENPER,CURRENT,NTREAT BY LENPER,
NTREAT BY CURRENT, LENPER BY CURRENT,
NTREAT BY LENPER BY CURRENT/
                                       96
MANOVA
READ INPUT DATA
111172152
111374131
111669131
112161130
 112361129
 112665126
 113162141
 113670111
114185147
 114376125
114661130
 121167136
121352110
 121662122
 122160111
 254159102
254358 98
254688135
```

Figure 1.24b

TESTS OF SIGNIFICANCE FOR Y USING S	•				_
SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIG. OF F
RESIDUAL.	2211.96526	46	48.08620		
REGRESSION	987.52432	1	987 . 52432	20.5 3654	.000
CONSTANT	1316, 19933	1	1316.19933	27.37166	0.0
REPLIC	.27456	ī	.27456	.00571	.940
NTREAT	441.20522	ž	220.60261	4.58765	.015
LENPER	180.52285	. 3	60.17428	1.25138	. 302
	2111.03300	3	703.67767	14.63367	0.0
CURRENT	211.79056	6	35.29843	.73407	.625
NTREAT BY LENPER	467.84848	6	77.97475	1.62156	. 163
NTREAT BY CURRENT	404.37365	9	44.93041	.93437	.505
LENPER BY CURRENT	1021 .61800	18	56.75656	1.18031	.315

1.25 Nested Designs

A nested design arranges the experimental units hierarchically. For example, consider an experiment to compare the yield of wheat per acre for different areas in a given state. Five counties are selected at random, then three townships are randomly selected from each county. From each township two farms are selected and the yield of wheat per acre is obtained. The resulting experiment produces $5 \times 3 \times 2 = 30$ experimental units. The factors of this experiment are county and township, and the township effects are *nested* under the county factor, since a given township appears only under one of the five counties. In other words, the county factor is not *crossed* with township factor and so the interaction between county and township is not estimable.

The model for this two-factor nested design is

$$Y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

where α_i is the county effect and $\beta_{\vec{y}\vec{v}}$ is the township effect nested under the county effect.