The second DESIGN specification requests the regression effect (X) adjusted for the factor DRUG (Figure 1.17e). Figure 1.17e | TESTS OF SIGNIFICANCE FOR | Y USING SEQUENTIAL SUMS OF SQUARES | | | | | |--|---|-------------------|--|----------------------------------|--------------------| | SOURCE OF VARIATION | SUM OF SQUARES | DF | MEAN SQUARE | F | SIG. OF F | | WITHIN+RESIDUAL
CONSTANT
DRUG
X | 417.20260
1872.30000
293.60000
577.89740 | 26
1
2
1 | 16.04625
1872.30000
146.80000
577.89740 | 116.68144
9.14855
36.01447 | 0.0
.001
0.0 | The regression coefficient can be obtained from the estimate of the parameters for factor X (Figure 1.17f). Figure 1.17f | NSTANT | | | | | | | |-----------|--------------------------------|--------------------|----------------------|--------------|----------------------|----------------------| | PARAMETER | COEFF. | STD. ERR. | T-VALUE | SIG. OF T | LOWER .95 CL | UPPER .95 CL | | 1 | -2.6957729061 | 1.91108 | -1.41060 | . 170 | -6.62406 | 1.23252 | | RUG . | | | | | | | | PARAMETER | COEFF. | STD. ERR. | T-VALUE | SIG. OF T | LOWER .95 CL | UPPER .95 CL | | 2
3 | -1.1850365374
-1.0760652052 | 1.06082
1.04130 | -1.11709
-1.03339 | .274
.311 | -3.36559
-3.21648 | . 99551
1 . 06435 | | | | | | | | | | PARAMETER | COEFF. | STD. ERR. | T-VALUE | SIG. OF T | LOWER .95 CL | UPPER .95 CL | | 4 | .9871838111 | . 16450 | 6.00121 | .000 | . 64905 | 1.32531 | From the covariance model given above, it follows that there is a common regression coefficient for the given X. This implies that the within-treatment regression coefficients are homogeneous. The assumption of homogeneity of regression coefficients in the analysis of covariance can be assessed by introducing a treatment by covariate interaction term in the model. A test for no interaction between DRUG effects and covariate is equivalent to testing the hypothesis that the pooled within-treatment regression coefficient is appropriate. The test for treatment by covariate interaction, which is referred to as the test for regression parallelism, can be obtained in MANOVA as follows: The analysis of variance table for this DESIGN specification is given in Figure 1.17g. Since X BY DRUG is not significant, the hypothesis of the homogeneity of the within- Since X BY DRUG is not significant, the hypothesis of the homogeneity of the within-treatment regression is not rejected. Figure 1.17g | TESTS OF SIGNIFICANCE FOR | Y USING SEQUENTIAL SUMS OF SQUARES | | | | | |---|--|------------------------|--|--|----------------------------| | SOURCE OF VARIATION | SUM OF SQUARES | DF | MEAN SQUARE | F | SIG. OF F | | WITHIN+RESIDUAL
CONSTANT
X
DRUG
X BY DRUG | 397.55795
1872.30000
802.94369
68.55371
19.64465 | 24
1
1
2
2 | 16.56491
1872.30000
802.94369
34.27686
9.82232 | 113.02805
48.47255
2.06924
.59296 | 0.0
0.0
.148
.561 | ## 1.18 Analysis of Covariance with Separate Regression Estimates Consider a 2×2 (Factors A, B) design with covariate X. The model (using dummy variables) can be written as $$Y_{ijk} = \mu + \beta(X_{ijk} - \overline{X}) + \alpha_1 Z_{ijk} + \alpha_2 U_{ijk} + \alpha_3 Z_{ijk} U_{ijk} + \epsilon_{ijk}$$