The second DESIGN specification requests the regression effect (X) adjusted for the factor DRUG (Figure 1.17e).

Figure 1.17e

TESTS OF SIGNIFICANCE FOR	Y USING SEQUENTIAL SUMS OF SQUARES				
SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIG. OF F
WITHIN+RESIDUAL CONSTANT DRUG X	417.20260 1872.30000 293.60000 577.89740	26 1 2 1	16.04625 1872.30000 146.80000 577.89740	116.68144 9.14855 36.01447	0.0 .001 0.0

The regression coefficient can be obtained from the estimate of the parameters for factor X (Figure 1.17f).

Figure 1.17f

NSTANT						
PARAMETER	COEFF.	STD. ERR.	T-VALUE	SIG. OF T	LOWER .95 CL	UPPER .95 CL
1	-2.6957729061	1.91108	-1.41060	. 170	-6.62406	1.23252
RUG .						
PARAMETER	COEFF.	STD. ERR.	T-VALUE	SIG. OF T	LOWER .95 CL	UPPER .95 CL
2 3	-1.1850365374 -1.0760652052	1.06082 1.04130	-1.11709 -1.03339	.274 .311	-3.36559 -3.21648	. 99551 1 . 06435
PARAMETER	COEFF.	STD. ERR.	T-VALUE	SIG. OF T	LOWER .95 CL	UPPER .95 CL
4	.9871838111	. 16450	6.00121	.000	. 64905	1.32531

From the covariance model given above, it follows that there is a common regression coefficient for the given X. This implies that the within-treatment regression coefficients are homogeneous. The assumption of homogeneity of regression coefficients in the analysis of covariance can be assessed by introducing a treatment by covariate interaction term in the model.

A test for no interaction between DRUG effects and covariate is equivalent to testing the hypothesis that the pooled within-treatment regression coefficient is appropriate. The test for treatment by covariate interaction, which is referred to as the test for regression parallelism, can be obtained in MANOVA as follows:

The analysis of variance table for this DESIGN specification is given in Figure 1.17g.

Since X BY DRUG is not significant, the hypothesis of the homogeneity of the within-

Since X BY DRUG is not significant, the hypothesis of the homogeneity of the within-treatment regression is not rejected.

Figure 1.17g

TESTS OF SIGNIFICANCE FOR	Y USING SEQUENTIAL SUMS OF SQUARES				
SOURCE OF VARIATION	SUM OF SQUARES	DF	MEAN SQUARE	F	SIG. OF F
WITHIN+RESIDUAL CONSTANT X DRUG X BY DRUG	397.55795 1872.30000 802.94369 68.55371 19.64465	24 1 1 2 2	16.56491 1872.30000 802.94369 34.27686 9.82232	113.02805 48.47255 2.06924 .59296	0.0 0.0 .148 .561

1.18 Analysis of Covariance with Separate Regression Estimates

Consider a 2×2 (Factors A, B) design with covariate X. The model (using dummy variables) can be written as

$$Y_{ijk} = \mu + \beta(X_{ijk} - \overline{X}) + \alpha_1 Z_{ijk} + \alpha_2 U_{ijk} + \alpha_3 Z_{ijk} U_{ijk} + \epsilon_{ijk}$$