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Chapter 1

MANOVA:
Multivariate Analysis of Variance

SPSS MANOVA is a generalized multivariate analysis of variance and covariance program which
will perform univariate and multivariate linear estimation and tests of hypotheses for any crossed
and/or nested design with or without covariates. The user has complete control of the model
specification. For example, several effects can be lumped together into a single term. Also.
interaction between factors and covariates is allowed.

The sections beginning with 1.2 present univariate analysis of variance models, which include
balanced incomplete block designs, confounding designs, nested designs, and split-plot designs.
Special features such as collapsing error terms, specifying multiple error terms, partitioning
degrees of freedom, contrasts, orthogonal polynomials and analysis of covariance are also
discussed.

Tests of significance for a multivariate analysis of variance model include hypotheses and error
matrices, four multivariate test criteria, dimension reduction analysis, univariate F tests, and
step-down analysis. In addition. principal components analysis and discriminant analysis can be
requested. They are documented beginning in Section 1.31.

The sections beginning with 1.38 present multivariate multiple linear regression analysis,
which can be considered a special case of multivariate analysis of covariance in which all the

- independent variables are covariates. Canonical correlation analysis is also discussed.

MANOVA enables the user to analyze a large class of repeated measures designs. The
observation can be either single-valued or vector-valued. Covariates, varying or constant across
the repeated measures, can also appear in the model. These facilities are described beginning in

Section 1.43.

Section 1.51 describes the graphics features available in MANOVA.
MANOVA may require an additional scratch file for which provision must be made in the job
setup. See Appendix L for information for the IBM/OS version.

1.1 OVERVIEW

MANOVA specifications are entered via the MANOVA command itseif and a number of optional

subcommands that fall into the three categories outlined below. For more detail on these, see
Section 1.52.
The MANOVA command has the following general format:

MANOVA <dependent variable list> BY <factor list> WITH
<covariate list>/

The MANOVA command, with no subcommands, is the only required specification. A dependent
variable list of one variable activates univariate analysis; more than one dependent variable
activates multivariate analysis of variance.

Subcommands in the first category specify the factor and data structures of the design.
WSFACTOR provides the within-subjects factors for a repeated measures design.

WSFACTOR = <factor list>/
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TRANSFORM requests a linear transformation of the dependent variables and covariates.
TRANSFORM (variable listl/variable list2/...) =

[ORTHONORM ] DEVIATIONS (refcat)
DIFFERENCE

[BASIS] HELMERT

[CONTRAST ]

POLYNOMIAL [(metric)]
SPECIAL (matrix)

}
}
SIMPLE (refcat) , % /
%
WSDESIGN <effect list> ;

{
!
5
} REPEATED
{
!

WSDESIGN specifies the model for the within-subjects factors and RENAME can be used to
rename tk : transformed variables.

WSDESIGN = < effect list > /

RENAME = newnamel, newname2, ../
The second category contains subcommands PRINT, PLOT, and PUNCH, which control the
amount of optional output produced by MANOVA.

PRINT = CELLINFO( [MEANS] [SSCP] [COV] [COR] )

Ngl[;RINT HOMOGENEITY( [BARTLETT] [COCHRAN] [BOXM] )

DESIGN( [ONEWAY] [OVERALL] [BIAS] [DECOMP]
{SOLUTION] )

PRINCOMPS( [COR] (COV] (MINEIGEN(eigcut)]
[NCOMP(n) ] {ROTATE(rottyp)] )

ERROR( [SSCP) [COV] [COR] [STDV] }

SIGNIF( [HYPOTH] [MULTIV] [EIGEN]
[DIMENR] {UNIV] [STEPDOWN }
[AVERF] [BRIEF] [SINGLEDF] )

DISCRIM( [RAW] [STAN] [ESTIM] [COR]
[ROTATE(rottyp)] [ALPHA(alpha}] )

PARAMETERS( [ESTIM]} [COR] [ORTHO] [NEGSUM] )

OMEANS{ ( VARIABLES(var list)
) TABLES( table requests )y )]

PMEANS{ ( VARIABLES(var list)
TABLES( table requests )
ERROR( errorn ) ) 1]

POBS [ ERROR( errorn )} ]

FORMAT( [WIDE) ) /
{NARROW ]

PLOT {CELLPLOTS] [NORMAL ] [BOXPLOTS]

[ STEMLEAF] [ZCORR] [ PMEANS |

(POBS]

[ SIZE( nhor , nvert ) | /
CELLINFO( [MEAN] [SSCP] [COR] {COV) [sTDV] )
ERROR( [SSCP] [COR] [cov] [sTDV] )

PMEANS [ ( ERROR( errorn )y )]

]

PUNCH

1§

poBS [ ( ERROR{ errorn ) ) ] /

The last category consists of the subcommands that indicate the computational options and model
specifications. METHOD provides several options for parameter estimation.

METHOD = MODELTYPE( [MEANS] )
[OBSERVATIONS]

{CHOLESKY]
ESTIMATION( [QR) [LASTRES]  [CONSTANT] )
[BALANCED] [NOLASTRES] [NOCONST]
{NOBALANCED
SSTYPE( [SEQUENTIAL] ) /
[UNIQUE]

ANALYSIS subsets and/or reorders the variables.

ANALYSIS = <dep var 1ist> WITH <covar list>/
. - or -
ANALYSIS[(CONDITIONAL) ] = (<dep list 1> WITH <covar list 1>/
[lUNCONDITIONAL)] <dep list 2> WITH <covar list 2>/ ...

WITH <covar list> /




—or -
ANALYSIS( REPEATED [CONDITIONAL] ) /
{UNCONDITIONAL]

PARTITION subdivides the degrees of freedom of a factor.
PARTITION( factorname) [= (dfl, d4f2,..)}] /

CONTRAST indicates the type of contrast desired for a factor.

DEVIATION [(refcat)]
DIFFERENCE
HELMERT
CONTRAST( factorname) = SIMPLE [(refcat)]
REPEATED
i POLYNOMIAL {(metric)]
SPECIAL (matrix)

et e et
-~

ERROR specifies the error term to be used in the model.

{ WITHIN or W }
{ RESIDUAL or R }
ERROR = % WITHIN + RESIDUAL or WR z /
n

DESIGN specifies the design model to be analyzed.
DESIGN = effectl, effect2,../

The DESIGN specification should be the last subcommand of a complete MANOVA run. All the
computational and output options are applied to the subsequent DESIGN models unless
overridden.
As an example of specifications for MANOVA, consider the following:
MANOVA Y BY A(1,3) B(1,4) WITH X/
PRINT=CELLINFO(MEANS)/
METHOD=ESTIMATION(BALANCED)/
DESIGN=A,B/
METHOD=ESTIMATION(QR)/
DESIGN=A,B,A BY B/

An analysis of covariance model is specified with Y as the dependent variable, X as the covariate,
and A and B as factor variables with three and four levels respectively. The PRINT subcommand
requests cell information. The METHOD subcommand indicates that a special balanced
processing method be used for parameter estimation. These two options apply to the first DESIGN
specification, which requests a main effects model. The second METHOD subcommand requests
the (default) QR method for estimating the parameters in the second DESIGN specification (a full
model). The PRINT subcommand applied to the first DESIGN will also apply to the second
DESIGN.

Note that if the last command is not a DESIGN specification, MANOVA will generate a full
model design specification for the problem.

1.2 UNIVARIATE ANALYSIS OF VARIANCE

The basic features of MANOVA useful for univariate analysis of variance are illustrated in the
following example taken from Winer (1971, p. 436). An experiment was conducted to evaluate the
relative effectiveness of three drugs (Factor DRUG) in bringing about behavioral changes in two
categories of patients (Factor CAT). Three patients of each category were assigned at random to

one of three drugs, and criterion ratings (Y) were made for each patient. The data are given in
Table 1.2.

Table 1.2
DRUG
1 2 3
8 10 8
1 4 8 6
0 6 4
CAT
14 4 15
2 10 2 12
6 0 9

MANOVA

3
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Figure 1.2 shows SPSS commands to accomplish the analysis of variance of the data. The
MANOVA specification defines Y to be the dependent variable and CAT and DRUG the factor
variables with two and three levels respectively. Since only one dependent variable (Y) is
indicated, a univariate analysis of variance is requested.

Figure 1.2
RUN NAME A UNIVARIATE 2*3 EXAMPLE.
COMMENT THE DATA ARE TAKEN FROM WINER(1971) PAGE 436.

Y : THE DEPENDENT VARIABLE.
CAT : FACTOR WITH 2 LEVELS.
DRUG : FACTOR WITH 3 LEVELS.

VARIABLE LIST CAT DRUG Y

INPUT FORMAT  FREEFIELD

INPUT MEDIUM CARD

MANOVA Y BY CAT(1,2) DRUG(1,3)/

READ INPUT DATA

—

=
ONLPORLMIODOIDMOOLD

15
12
9

FSESESEURFSESE VR VR SR g e el el el
HUHOUPIHEFWWWDNDN -

END INPUT DATA
FINISH

The default model generated from the MANOVA specifications is a full factorial. For this
example the model is

Yo =p+a + B+ (aB)y + €
where a, is the main effect of category i, B; is the main effect of drug j, and («B); is the interaction

of patient category i and drug j. For the various tests, it is necessary to assume that the error terms,
€.« are independently identically distributed as normal with mean 0 and variance o®.

1.3 Default Output
The default output (without any PRINT subcommand) from a MANOVA run includes

1 An analysis of variance (ANOVA) table. As shown in Figure 1.3a, it gives the sum of squares,
degrees of freedom, mean square, F value, and the probabilities of each F value. The
within-cells error term (default error-term if it exists) is used to obtain all the F values.

Figure 1.3a

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 106 .00000 12 8.83333

CONSTANT 882.00000 1 882.00000 99.84906 0.0
CAT 18.00000 1 18.00000 2.03774 179
DRUG 48.00000 2 24.00000 2.71698 .108
CAT BY DRUG 144.00000 2 72.00000 8.15094 .006

2 Statistics for parameter estimation (Figure 1.3b). These consist of estimates of the parameters
(COEFF), the standard errors of the estimates (STD. ERR.), the t-value for testing that the

. parameter is zero, the two-tailed significance of the test, and 95% confidence intervals for the
parameters. (Note that the parameters estimated here are not the original a;, B;, or (aB)y;
instead, contrasts of the parameters are estimated. See Section 1.52 for detailed information.)




Figure 1.3b

ESTIMATES FOR Y

CONSTANT

PARAMETER COEFF.
1 7.0000000000

CAT

PARAMETER COEFF .
2 -1.0000000000

DRUG

PARAMETER COEFF.
3 0.0
4 ~2.0000000000

CAT BY DRUG

PARAMETER COEFF.
S -2.0000000000
6 4.0000000000

STD. ERR.
.70053

STD. ERR.
.70063

STD. ERR.

.99070
.99070

STD. ERR.

.99070
.99070

T-VALUE
9.99245

T-VALUE
-1.42749

T-VALUE

0.0
-2.01878

T-VALUE

-2.01878
4.03756

SIG. OF T
.000

SIG. OF T
.179

SIG. OF T

1.000
.066

SIG. OF T

.066
.002

.95 CL
.52632

.95 CL

.52632

.96 CL
.15854

.15854

.95 CL

. 15854

LOWER .95 CL  UPPER
5.47368 8
LOWER .95 CL  UPPER
, -2.52632
LONER .95 CL  UPPER
-2.15854 2
-4.15854
LOWER .95 CL  UPPER
-4.15854
1.84146 6

. 15854

1.4 Use of the PRINT Subcommand

Additional printed output can be obtained by using the PRINT subcommand. For instance, tests of
homogeneity of within-cells variance are produced by specifying

MANOVA

Y BY CAT(1,2) DRUG(1,3)/

PRINT=HOMOGENEITY (BARTLETT, COCHRAN) /

The output (Figure 1.4a) includes Bartlett’s test and Cochran'’s test. The significance (P) of both

tests is also given.

Figure 1.4a

UNIVARIATE HOMOGENEITY OF VARIANCE TESTS

VARIABLE .. Y

COCHRANS C(2.6)
F(5.185)

BARTLETT-BOX

.30189, P
.38601, P

no

.829 (APPROX.)
.858

The cell statistics, including the mean, standard deviation, number of observations, and the
95% confidence intervals for the population means can be obtained using

MANOVA

Y BY CAT(1,2) DRUG(1,3)/

PRINT=CELLINFO(MEANS)/

The output from the above PRINT subcommand is given in Figure 1.4b.

Figure 1.4b

CELL MEANS AND STANDARD DEVIATIONS

VARIABLE .. Y

FACTOR CODE
CAT 1
DRUG 1
DRUG 2
DRUG 3
CAT 2
DRUG 1
DRUG 2
DRUG 3

MEAN STD. DEV.
4.00000 4.00000
8.00000 2.00000
6.00000 2.00000
10.00000 4.00000
2.00000 2.00000
12.00000 3.00000
7.00000 4.31141

N 95 PERCENT CONF.

-5.93666
3.03167
1.03167

(22 R

.06334
-2.96833
4.54751

NG

4.85599

13.
10.

©19.
19.

INTERVAL

93666
.96833
96833

93666
.96833
45249

.14401

MANOVA §
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1.5 Specifying a Model with the DESIGN Subcommand

If the desired model is not the default full factorial, the mode] must be specified using the DESIGN
subcommand. To specify a model that includes only the main effect terms, use

MANOVA Y BY CAT(1.2) DRUG(1.3)/
DESIGN CAT.DRUG/

If there are three factors, (A, B, and C) with three levels each, the model containing only main
effects and the A BY B and B BY C interactions is specified by

MANOVA Y BY ABC (1.3)/
DESIGN= A, B, C, A BY B, B BY C/

The keyword BY in the DESIGN subcommand indicates an interaction term. Thus a three-way
interaction is written as A BY B BY C.

1.6 Specifying the ERROR Term

Unless otherwise requested, the within-cells mean square is used as the denominator for all the F
values. If there is no within-cells error, the residual error is used. The residual mean square is the
mean square for all terms not specified in the DESIGN subcommand. For example, if the model
containing only main effects for DRUG and CAT is requested using

DESIGN= CAT,DRUG/

the residual error term is the mean square for the CAT BY DRUG interaction. For the three-factor
design specification developed previously, the residual error corresponds to the sum of squares for
the pooled A BY C and A BY B BY C interactions since they are not included in the DESIGN
specification.

The ERROR subcommand designates the error term to be used for the analysis. See Section
1.91 for rules governing the use of the ERROR subcommand. If different error terms are to be
used for the various terms in the design specification, this is indicated in the DESIGN
subcommand. See Section 1.92 for further details.

1.7 An Example Using DESIGN and ERROR

The following commands request a main effects model for the data of Figure 1.2. The pooled
interaction term (denoted as R for residual) and within-cells error (denoted as W) are used as the
error.

MANOVA Y BY CAT(1,2) DRUG(1.3}/

ERROR=W+R/
DESIGN=CAT,DRUG/

The error subcommand must precede the design specification to which it applies. The analysis of
| variance table from the preceding commands is given in Figure 1.7.

| Figure 1.7

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUNMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN+RESIDUAL 250 .00000 14 17.85714

CONSTANT 882.00000 1 882 .00000 49.39200 0.0
CAT 18.00000 1 18.00000 1.00800 .332
DRUG 48.00000 2 24.00000 1.34400 . 292

The result in Figure 1.7 can also be obtained by specifying

MANOVA Y BY CAT(1,2) DRUG(1,3)/
DESIGN = CAT VS W+R, DRUG VS W+R/

1.8 Partitioning the Sum of Squares

Often it is desirable to partition the sum of squares associated with the various effects into a
number of components that are more relevant to the individual questions of interest. See Cochran
and Cox (1957).

In procedure MANOVA partitions are controlled by the keyword PARTITION followed by
the name of the factor and the degrees of freedom associated with each component.

To partition the sum of squares for factor DRUG into two components with one degree of
freedom each, the following commands can be used.




MANOVA Y BY CAT(1.2) DRUG(1,3)/
PARTITION(DRUG)=(1.1)/
DESIGN=CAT,DRUG(1),DRUG(2),CAT BY DRUG/

The first component is denoted by DRUG(1), and the second by DRUG(2). The output is given in
Figure 1.8. '

Figure 1.8

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG.
WITHIN CELLS 106.00000 12 8.83333

CONSTANT 882.00000 . 1 882.00000 99.84906

CAT 18.00000 1 18.00000 2.03774

DRUG( 1) 12.00000 1 12.00000 1.35849

DRUG(2) 36.00000 1 36.00000 4.07547

CAT BY DRUG 144.00000 2 72.00000 8.15094

ESTIMATES FOR Y

CONSTANT
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
1 7.0000000000 .70053 9.99245 .000 5.47368 8.52632
CAT
PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
2 -1.0000000000 .70053 -1.42749 .179 -2.52632 .52632
DRUG({1)
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
3 0.0 .99070 0.0 1.000 ~2.15854 2.15854
DRUG(2)
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL ° UPPER :95 CL
4 -2.0000000000 .99070 -2.01878 .066 -4.15854 .15854
CAT BY DRUG
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
5 -2.0000000000 99070 -2.01878 .066 ~4.15854 .15854
6 4.0000000000 .99070 4.03756 .002 1.84146 6.15854

OF F

The default contrasts used for partitioning are deviation contrasts (see Section 1.89). The
deviation contrasts are not orthogonal, so the two contrasts for DRUG(1) and DRUG(2) are not
independent.

1.9 Types of Contrasts

The MANOVA procedure allows specification of six different contrast types: deviation, difference,
Helmert, simple, repeated, and polynomial. The user can also input any other contrast matrix via
the SPECIAL keyword.
For example, to specify user-supplied orthogonal contrasts for the DRUG factor, the following
commands can be used:
MANOVA Y BY CAT(1,2) DRUG(1,3)/
CONTRAST(DRUG)=SPECIAL({1 1 1 -1 2 -1 1 0 -1)/
PARTITION(DRUG)=(1,1)/

DESIGN=CAT,DRUG(1),DRUG(2),CAT BY DRUG(1),
CAT BY DRUG(2)/

The first set of coefficients (1 1 1) is always the weights for obtaining the constant term. Following
the weights vector are the contrasts. The number of contrasts should be equal to the degrees of
freedom for the factor. The first contrast (-1 2 -1) defines a contrast between level 2 and the
combination of levels 1 and 3 for factor DRUG. The second contrast (10-1) requests a comparison
between levels 1 and 3 of DRUG. For most applications, the user shoud be sure that each set of
contrast coefficients sum to zero.

Since the inner product of the two contrasts is 0 and the sample sizes in all cells are equal, i.e.,
(-1)(1) + 2(0) + (-1)(-1) = 0, the two contrasts are independent. In this example, the DRUG(1)
partition can be used to test the hypothesis B, = (B, + PB,;)/2 while the second contrast tests
B: = Bs. The ANOVA table is given in Figure 1.9.

MANOVA 7
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Figure 1.9

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 106.00000 12 8.83333

CONSTANT 882.00000 1 882.00000 99.84906 0.0
CAT 18.0000C 1 18.00000 2.03774 .179
DRUG(1} 36.00000 1 36.00000 4.07547 066
DRUG(2) 12.00000 1 12.00000 1.35849 .266
CAT BY DRUG(1) 144.00000 1 144 .00000 16.30189 .002
CAT BY DRUG(2) 0.0 1 0.0 0.0 1.000

The above discussion of orthogonal contrasts assumes that the cell frequencies are equal. For
the use of the orthogonal contrasts in unbalanced designs, see Section 1.16.

1.10 Designs with Unequal Cell Frequencies

In many experiments, it may not be possible to have equal numbers of observations for each cell.
Such designs are termed unbalanced or nonorthogonal. In nonorthogonal designs the effects are
correlated with each other and cannot be estimated independently of one another. That is, the
component sum of squares will not add up to the total sum of squares because the main effects will
usually not be independent of each other and the interaction effects will not be independent of the
main effects. Different ANOVA solutions can be obtained for the same design depending on the
“type" of sum of squares calculated. For example, in an unbalanced design with two factors A and
B. the sum of squares for main effect A differs depending on whether effect A is the only one in the
model or whether it is added to a model already containing effect B.

1.11 Sequential Sums of Squares (Fitting Constants)

Sequential sums of squares are the default type calculated by MANOVA. The sums of squares for
each effect are “‘adjusted” for all effects previously entered into the model. That is, the sum of
squares for an effect is adjusted only for all terms to the left of it in the DESIGN subcommand. All
terms to the right are ignored. Therefore the order in which terms are specified on the DESIGN
subcommand. or the MANOVA command if a DESIGN subcommand is not present, is important.
Different orders may produce different results. For the two-factor design specified using

DESIGN=A.B/

the B main effect is adjusted for A and the overall mean, while A is adjusted only for the mean. If
the model is specified as .

'DESIGN=B,A/

the A main effect is adjusted for B and the mean, while the B effect is adjusted only for the mean.

Since several DESIGN subcommands can be used in one invocation of the MANOVA
procedure, it is possible to obtain easily various sums of squares. For example, in a two-factor
model. to obtain the main effect sum of squares adjusted for other main effects and the interaction
effect adjusted for main effects, specify both

DESIGN=A,B,A BY B/
DESIGN=B,A, A BY B/

The first ANOVA table will contain B adjusted for A, and A BY B adjusted for both main effects.
The second ANOVA table will contain A adjusted for B and the interaction adjusted for both main
effects.

1.12 Regression Model Sum of Squares (Weighted Squares of Means)
It is possible to obtain sums of squares adjusted for all effects listed on the DESIGN subcommand,
by specifying

METHOD=SSTYPE(UNIQUE)/

For the two-factor model this results in main effect A being adjusted for both B and the A BY B
interaction. Similarly B is adjusted for A and the interaction, while the interaction is adjusted for
main effects A and B.

1.13 Decomposition and Bias Matrices
If the design is unbalanced and the default sequential sums of squares are used, the decomposition
and bias matrices may be of interest. They are obtained by specifying

PRINT=DESIGN(DECOMP, BIAS)/




The elements in the upper triangle of the decomposition matrix are used to obtain the sum of
squares for each effect in the model. Consider a 2 x 3 factorial design, where T is the upper
triangle of the decomposition matrix.

th ha hy Ly 15 1

0 tyy 13 tyy 1y5 126

0 0 t55 134 135 136

0 0 0 1415 s

0 0 0 0 #5515

00 0 0 0

The first row of T represents the CONSTANT effect, the second row represents the effect of A, the
third and fourth rows are the effects of B, and the last two rows are the effects of AB. If b’ = (h, h,
hy hy h; hy) is the least-squares éstimate of the contrasts of effects, then the sequential sums of
squares for the effects are as shown in Table 1.13.

Table 1.13

Source Sum of Squares

CONSTANT (tuhr+th,+tghy+ by + tshs+ tyeh,)2

A (tezha+toshs+ tyh, +tyshs + tohg)?

B adjusted A (tashs+ thy + tshs + tyshs)?+ (t,h, +tyshs +t,5h,)?

AB adjusted A.B (l_;5h5+ t,-;ﬁhﬁ)2+(tﬁﬂh5)2

If the DESIGN specification for this example is
DESIGN=A,B,A BY B/

then the bias matrix is a 4 X 4 upper triangular matrix, since the order of the bias matrix is the
number of effects in the model (in this case, CONSTANT, A, B, and A BY B). The (i,j)th element
of this matrix is obtained by summing the squared elements of the T matrix, which are in the rows
of effect i and the columns of effect j. The bias matrix for this example is

f B+t s + B

0 6, 3+ 48, Bs + 13

0 0 Ba+8B,+08, 6+ B¢+ 035+ 65
0 0 0 2+ B + 1k

The bias matrix can be used as a measure of the degree of the confounding among effects. For
example, the coefficients corresponding to h, and h; (factor B) in the calculation of sum of squares
of A are t; and t,,; thus t,° + t,? (squaring is to avoid the sign) can be used as a confounding index
between A and B.

1.14 Redundant Effects

If there are empty cells in the design, some effects in the model may not be estimable. MANOVA
determines the redundant effects by orthonormalization of the design matrix and prints the
information. Figure 1.14 indicates that the interaction effects in columns 10 and 12 in the design
matrix are not estimable because of empty cells.

Figure 1.14

REDUNDANCIES IN DESIGN MATRIX

COLUMN EFFECT
10 A BY B
12 { SAME)

1.15 Solution Matrices

For any connected design, the hypotheses associated with the sequential sums of squares are
weighted functions of the population cell means with weights depending on the cell frequencies
(e.g. see Searle(1971), pp. 306-313). For designs with every cell filled, it can be shown that the
hypotheses corresponding to the regression model sums of squares are the unweighted hypotheses
about the cell means. With empty cells the hypotheses will depend on the pattern of the
missingness. In such cases, one can request that the solution matrix, which contains the coefficients
of the linear combinations of the cell means being tested, be printed by specifying

MANOVA 9
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PRINT=DESIGN(SOLUTION)/

| For example, in a 2 X 3 (factors A, B) design with one empty cell. The solution matrix P of this
design would be

P Pa Psr -Pu Psr
Pz P22 P32 Piz Ps2
P = Pis Pes Pss Pis Pss
Pu Pa Pu Pu Ps
P15 P2 Pss Pis Pss
Pic P2 Pss Pis Pss

SO0 Q

The first column of P indicates that the hypothesis corresponding to the sum of squares of
CONSTANT is g

Pribart Prebhie Pasthis+ Priphar+ Prsireet Propras = 0

where p; is the population mean of cell (i,j).

Similarly, column 2 of P represents the coefficients of the linear combinations of cell means
being tested for the sum of squares of A, columns 3 and 4 are for the sum of squares of B, and the
last two columns are for the sum of squares of AB.

An Example. The following example is taken from Bancroft (1968, p. 20). Quantitative
chemical experiments were rup to determine the reacting weights of silver (SILVER) and iodine
(IODINE) in silver iodine. Five different batches of silver and two different batches of iodine were
used in the experiment. These were treated, and then a determination of the reacting weights was
made. The coded data are given in Table 1.15. Note that there are two empty cells in the

experiment.
Tabie 1.15
% Silver
|
1 2 3 4 5
22 41 29 49 55
1 20
25 41 37 50
Iodine
-1, 23 61
2 40 13 - -
18 i

The MANOVA commands illustrated in Figure 1.15a produce the analysis shown in Figures

1.15b-1.15d.
Figure 1.15a
RUN NAME A 5*2 DESIGN WITH EMPTY CELLS.
COMMENT DATA ARE TAKEN FROM BANCROFT(1968) PAGE 20.

VARIABLE LIST SILVER IODINE RESP

INPUT FORMAT  FREEFIELD

INPUT MEDIUM  CARD

MANOVA RESP BY SILVER(1,5) IODINE(1,2)/
PRINT=DESIGN{DECOMP,BIAS)/
DESIGN=SILVER, IODINE,SILVER BY IODINE/
DESIGN=10DINE,SILVER, SILVER BY IODINE/

EAD INPUT DATA

=

NADRNWUHWUDNDON - =
R0 DR - PO N D
n
w
.

END INPUT DATA
FINISH




The two DESIGN subcommands are used to obtain the sum of squares for IODINE adjusted
for SILVER and vice versa. The decomposition and bias matrices are also requested.

The output (Figure 1.15b) indicates that two degrees of freedom for the SILVER BY IODINE
interaction effects are lost because of the empty cells. Therefore, instead of four degrees of

freedom, it has only two.

Figure 1.15b

REDUNDANCIES IN DESIGN MATRIX
COLUMN EFFECT

9 SILVER BY IODINE
10 (SAME)

The decomposition and bias matrices and ANOVA table for the first DESIGN subcommand

are given in Figure 1.15¢.

Figure 1.15¢

TRIANGULAR DECOMPOSITION OF DESIGN

PARAMETER

PARAMETER 1 2
1 —4.00000 ~1.00000 ~.75000
2 1.73205 -2.23607 -.11180
3 1.41421 ~.63060 -2.10357
4 1.41421 -.63060 1.19303
5 1.73208 -.77233 —-.27080
6 1.41421 -.63060 -.22119
7 1.00000 ~.44590 —-.15640
8 1.00000 -1.44590 -1.19649

PARAMETER

PARAMETER 7 8
1 .50000 .25000
2 ~.22361 -.55902
3 ~-.64177 ~.53481
4 .53460 .44550
5 .44982 .37485
6 1.41750 1.18125
7 ~1.67054 1.00232
8 ~1.49674 -1.26491

BIAS COEFFICIENTS FOR SEQUENTIAL ORDERING

EFFECT
EFFECT 1 2
1 16.00000 2.086250 1.00000
4 0.0 16.93750 3.53333
3 0.0 0.0 11.46667
4 0.0 0.0 0.0

e e ]

TESTS OF SIGNIFICANCE FOR RESP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES

WITHIN CELLS 1041.66667
CONSTANT 17095 .56250
SILVER 2572.30417
I0DINE 149.95504
SILVER BY IODINE 491.51163

4 5 6
.50000 -.50000 -1.00000
.22361 —-.22361 1.34164
28523 -.28523 .76061
90227 .32521 1.06028
60122 1.87427 -.17493
10682 1.33325 3.38625
.07554 .94275 -2.92061
.00287 -.76008 1.11430

4
31250
88750
40465
39535
DF  MEAN SQUARE F SIG. OF F
8 130.20833
1 17095.56250 131.29392 0.0
4 643.07604 4.93882 .027
1 149.95504 1.15165 315
2 245.75581 1.88740 .213

The PRINT subcommand applies to both DESIGN specifications. Figure 1.15d presents only

the analysis of variance table for the second design specification.

Figure 1.15d

TESTS OF SIGNIFICANCE FOR RESP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES

WITHIN CELLS 1041.66667
CONSTANT 17095.56250
IODINE 473.20417
SILVER 2249.05504
SILVER BY IODINE 491.51163

DB -

MEAN SQUARE F SI1G. OF F
130.20833

17095 .56250 131.29392 0.0
473.20417 3.63421 .093
562.26376 4.31819 .037
245.75581 1.88740 .213

MANOVA
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1.16 Orthogonal Contrasts
for Unequal Numbers of Replicates

For balanced designs, two treatment contrasts are orthogonal if the cross products of the contrast
coefficients sum to zero. When treatments have unequal numbers of replicates, for contrasts to be
orthogonal the weighted sum of cross products, where the weights are the reciprocals of the
numbers of replicates, must be zero. For example, suppose the numbers of replicates for five
treatments are 4, 2, 1, S, and 1 respectively; then contrasts (4,2,-6, 0, 0) and (4, 2, 1, 5, -12) are
orthogonal, since 4 X 4/4 + 2 x 212 + (-6)(1)/1 = 0.

Figure 1.16a illustrates the use of the orthogonal contrasts in a one-way unbalanced design in
which the numbers of observations for treatments are 4, 4, 1, and 1, respectively. Note that
specification of the PARTITION command without degrees of freedom results in single-degree-of-
freedom partitions.

Figure 1.16a
RUN NAME ORTHOGONAL CONTRASTS FOR UNBALANCED DESIGN.
VARIABLE LIST TREATMNT,Y
N OF CASES 10

INPUT MEDIUM CARD
INPUT FORMAT FIXED(F1.0,F2.0)
MANOVA Y BY TREATMNT(1.4)/
PRINT=DESIGN(BIAS)/
CONTRAST( TREATMNT }=SPECIAL(1 1 1 1
1 - 0

PARTITION{TREATMNT) /
DESIGN=TREATMNT (1), TREATMNT(2), TREATMNT(3)/
READ INPUT DATA
1

—
—
~ o

NANN—HWON

-
ZOOOINOW®

In this example, TREATMNT(1) defines a comparison between treatments 1 and 2;
TREATMNT(2) is the contrast between treatment 3 and the combination of treatments 1 and 2;
and TREATMNT(3) can be used to test the hypothesis that the average of the first three treatment
effects is equal to the last treatment effect. All pairs of contrasts are orthogonal since (1)(4)/4 +
(-1)(4)/4 =0, (1)(4)/4 + (-1)(4)/4 = 0, and (4)(4)/4 + (4)(4)/4 + (-B)(1)1 = 0. The F tests are
therefore independent. The bias matrix and the ANOVA table corresponding to Figure 1.16a are
given in Figure 1.16b.

Figure 1.16b

BIAS COEFFICIENTS FOR SEQUENTIAL ORDERING

EFFECT

EFFECT 1 2 3 4

1 10.00000 0.0 .00434 .00278

2 0.0 2.00000 . .0

3 0.0 0.0 .01389 0

4 0.0 0.0 . 01111
TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES
SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 6.75000 6 1.12500
CONSTANT 608.40000 1 608. 40000 540 .80000
TREATMNT (1) 1.12500 1 1.12500 1.00000
TREATMNT(2) 6.12500 1 6.12500 5.44444
TREATMNT(3) 1.60000 1 1.60000 1.42222




The second example is adapted from Cochran and Cox (1957, p. 46). The experiment was
conducted to compare the effectiveness of four soil fumigants in keeping down the number of
eelworms in the soil. The fumigants were CN, CS, CM, and CK. Each fumigant was tested both in
a single and double dose. The control was used as another treatment. The nine treatments are
denoted as C00 (control), CN1 (CN with single dose), CS1, CM1, CK1, CN2 (CN with double
dose), CS2, CM2, and CK2. There were four replications for each dose of each fumigant and 16
replications of the control. The desired subdivisions of the treatment sum of squares are as follows:

1 If the effect of the fumigants is proportional to the dose, then both CN1 and CN2/2 are the
estimate of the effect of CN per unit dose. The pooled estimate of this effect is (CN1+
2(CN2))/5. The differences in the linear responses to the four fumigants can be measured by
the following three contrasts:

(0 1-1 0 0 2-2 0 0) .
0O 1 1 -2 0 2 2-4 0)
0 1 1 1-3 2 2 2-6)

2 The curvature of the treatment CN is measured by C00 ~ (2CN1) + CN2. The differences in
curvature are compared by the quantities CN2 -2(CN1), (the C00 term cancelled out in the
comparison) or by the following three contrasts: :

0O 2-2 0 0-1 1 0 0)
0 2 2-4 0-1-1 2 0)
0 2 2 2-6-1-1-1 3)

3 The sum of squares between levels (control: 0 level; treatments with single dose: level 1;
treatments with double level: level 2) can be partitioned into a component due to the linearity
between levels and one representing the curvature between levels. The former is given by the
comparison of —I(level 0) +0(level 1) +1(level 2), or the contrast (—4 0000111 1). The
curvature between levels is measured by 1(level 0) —2(level 1) +1(level 2), or the contrast (—4
-2-2-2-21111).

The above partitions can be summarized by the following MANOVA CONTRAST subcommand:

CONTRAST(TREATMNT)=SPECIAL(1 1 1 1 1 1
-1 0 0

v—w—-uoO&)OOo—'

~

1
1
1
2
2 2-4 0-1-1 2
2
0
-2

ALOOOOOO

PARTITION(TREATMNT)=(3 3 1 1)/
DESIGN=BLOCK TREATMNT(1) TREATMNT(2)
TREATMNT(3) TREATMNT(4)/

Note that TREATMNT(1), TREATMNT(2), TREATMNT(3), and TREATMNT(4) are the
effects of the differences in linear response, in curvature, linear response between levels, and
curvature between levels, respectively. Also, it can be verified that the effects are orthogonal.

1.17 Analysis of Covariance

SPSS MANOVA can perform an analysis of covariance in which interval-scaled independent
variables (covariates) are used in conjunction with categorical variables (factors). Analysis of
covariance is a technique that combines the features of analysis of variance and regression. A
two-way analysis of covariance model with two covariates can be described as follows:

Yiu = P:+<!i+7;+(a‘y).‘j+. Bi(Xije— X))+ Be Xeie— Xo) + €

where Y is the dependent variable, a;, v; are the main effects, and (ay); is the interaction effect.
X, X; are the covariates, and X,, X; are the means for the two covariates.

In the covariance model, Y has a (multiple) linear regression (see Section 1.38) on X; and X,
with regression coefficients B, and B,. The regression procedure is used to remove the variation in
the dependent variable due to covariates.

From the standpoint of the analysis of variance model, the covariate model is essentially an
analysis of variance model on the corrected scores or

Y= Bi(Xije— X1) — Be(Xoi— Xz) = m+o+y,+(ay)+em

which is the analysis of variance model for Y adjusted for the two covariates.

The following illustrative example is taken from Snedecor and Cochran (1967, p. 422). The
model is a one-way analysis of covariance with one covariate. The experiment was conducted to
evaluate the effect of three drugs on the treatment of leprosy. For each patient, six sites were
selected. The variate X, based on laboratory tests, is a score representing the abundance of leprosy

MANQOVA
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bacilli at these sites before the experiment began. Variate Y is a similar score after several months
of treatment. Drugs 1 and 2 are antibiotics, while drug 3 is an inert drug included as a control. Ten
patients were selected for each treatment. The MANOVA commands are as follows:

MANOVA Y BY DRUG(1,3) WITH X/
PRINT= PMEANS/

Inclusion of covariates in a model is indicated by the keyword WITH on the MANOVA command.
The PRINT = PMEANS (see Section 1.50) specification requests the predicted and adjusted (for
covariate) means of treatments.

The output includes the analysis of covariance summary table shown in Figure 1.17a, which
gives the sum of squares due to regression (adjusted for the factor DRUG), and the sum of squares
due to DRUG adjusted for regression. '

Figure 1.17a

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 417.20260 26 16.04625

REGRESSION 577.89740 1 577 .89740 36.01447 0.0
CONSTANT 31.92864 1 31.92864 1.98979 .170
DRUG 68.55371 2 34.27686 2.13613 .138

In addition, the estimated regression coefficient (B), the standardized regression coefficient
(BETA), the standard error of the regression coefficient and the t-value of the test that § = 0 are
also given (Figure 1.17b). Note that (6.00121)* = 36.014, which is the F value for the regression in
the ANOVA table. :

Figure 1.17b

REGRESSION ANALYSIS FOR WITHIN CELLS ERROR TERM

DEPENDENT VARIABLE ..Y

COVARIATE B BETA STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
X .9871838111 . 7620649867 .16450 6.00121 .000 .64905 1.32531

The adjusted and predicted means for the factor DRUG are shown in Figure 1.17c.

Figure 1.17c

ADJUSTED AND ESTIMATED MEANS
VARIABLE .. Y

FACTOR CODE OBS. MEAN ADJ. MEAN EST. MEAN RAW RESID. STD. RESID.
DRUG 1 §.30000 6.71496 5.30000 0.0 0.0
DRUG 2 6.10000 6.82393 6.10000 0.0 0.0
DRUG 3 12.30000 10.16110 12.30000 0.0 0.0

Since MANOVA allows the inclusion of interval-scaled variables in the DESIGN specification,
the analysis of covariance can also be obtained using the following MANOVA commands:

MANOVA Y.X, BY DRUG(1,3)/
ANALYSIS = Y/
DESIGN = X, DRUG/
DESIGN = DRUG,X/

The ANALYSIS subcommand is used to select Y as the dependent variable. The first DESIGN
subcommand produces the DRUG effects adjusted for the covariate (X). The output is given in
Figure 1.17d.

Figure 1.17d

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN+RESIDUAL 417.20260 26 16.04625

CONSTANT 1872.30000 1 1872.30000 116.68144 0.0

X 802.94369 1 802.94369 50.03932 0.0
DRUG 68.55371 2 34.27686 2.13613 .138
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The second DESIGN specification requests the regression effect (X) adjusted for the factor
DRUG (Figure 1.17e).

Figure 1.17e

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN+RESIDUAL 417.20260 26 16.04625

CONSTANT 1872.30000 1 1872.30000 116.68144 0.0

DRUG 293.60000 2 146.80000 9.14855 .001 R
X 577 .89740 1 577.89740 36.01447 0.0

The regression coefficient can be obtained from the estimate of the parameters for factor X
(Figure 1.17f).

Figure 1.17¢

~#

ESTIMATES FOR Y

CONSTANT
PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T LOWER .95 CL 'UPPER .95 CL
1 ~2.6957729061 1.91108 -1.41060 .170 —6.62406 1.23252
DRUG
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
2 -1.1850365374 1.06082 -1.11709 274 -~3.36559 .99551
3 -1.0760652052 1.04130 -1.03339 311 -3.21648 1.06435
X
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
4 .9871838111 .16450 6.00121 .000 .64905 1.325631

From the covariance model given above, it follows that there is a common regression
coefficient for the given X. This implies that the within-treatment regression coefficients are
homogeneous. The assumption of homogeneity of regréssion coefficients in the analysis of
covariance can be assessed by introducing a treatment by covariate interaction term in the model.

A test for no interaction between DRUG effects and covariate is equivalent to testing the
hypothesis that the pooled within-treatment regression coefficient is appropriate. The test for
treatment by covariate interaction, which is referred to as the test for regression parallelism, can be
obtained in MANOVA as follows:

MANOVA Y, X BY DRUG(1,3)/

ANALYSIS = Y/
DESIGN = X, DRUG, X BY DRUG/

The analysis of variance table for this DESIGN specification is given in Figure 1.17g.
Since X BY DRUG is not significant, the hypothesis of the homogeneity of the within-
treatment regression is not rejected.

Figure 1.17g

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN+RESIDUAL 397.55795 24 16.56491

CONSTANT 1872.30000 1 1872 . 30000 113.02805 0.0

X 802.94369 1 802.94369 48.47255 0.0
DRUG 68.55371 2 34.27686 2.06924 .148
X BY DRUG 19.64465 2 9.82232 .59296 .561

1.18 Analysis of Covariance with Separate Regression Estimates

Consider a 2 x 2 (Factors A, B) design with covariate X. The model (using dummy variables) can
be written as

Y = wt+BXin—X) + 0o, Zig+ Ui+ s ZigUe+ €5
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where

Zj =1 if i = 2 (level 2 of A is applied)
0 otherwise

Uy =1 if j = 2 (level 2 of B is applied)
0 otherwise

If the interaction terms between the covariate and factor variables are added to the model, then

Yo = ntBXue—X) + o, Zij+ Ui+ o,Z g Ui _
+(aB)(Xiu— X) Zip+ (QB)e(xajk_%)dxjk+(“B)J(xtjk_X)ZiJkUij*+€iﬂ‘

A test of H,: (aB), = (aB). = (aB)s = 0 is equivalent to testing the hypothesis that the regression
slopes are the same for all cells. This test can be performed by specifying the following MANOVA
commands:

MANOVA Y X BY A(1,2),B(1.,2)/
ANALYSIS=Y/
DESIGN=X,A,B,A BY B,
X BY A + X BY B + X BY A BY B/

The effects X BY A, X BY B, and X BY A BY B are lumped together to provide the test of the
parallelism hypothesis. If the test is not significant, the usual analysis of covariance model can be
used to perform the analysis.

If the assumption of the homogeneity of the slope is violated, one of the following three
models might be used:

1 The model of different slopes for each level of factor A. This model can be justified by testing
(aB). = (aB); = 0. The MANOVA specification for the test is

DESIGN=X,A,B,A BY B,
X BY B + X BY A BY B/

If the test is not significant, the following DESIGN specifications can be used for the analysis
of covariance of this model:

DESIGN=X WITHIN A, A, B, A BY B/
DESIGN=A, B, A BY B. X WITHIN A/

The X WITHIN A term represents the regression effects that are separately estimated within
each level of A. The first DESIGN specification requests the main effects and interaction
adjusted for the covariate effects. The second DESIGN specification gives the regression
effect (last term) adjusted for A, B and AB.

2 The mode! of different slopes for each level of factor B. The appropriate test for this model is
(aB); = (aB); = 0 and is obtained by specifying
DESIGN= X, A, B, A BY B, X BY A + X BY A BY B/

The analysis of covariance is obtained by using

DESIGN=X WITHIN B, A, B, A BY B/
DESIGN=A, B, A BY B, X WITHIN B/

3 The model of different slopes for each cell. The MANOVA specifications for this model are

DESIGN=X WITHIN A BY B, A, B, A BY B/
DESIGN=A, B, A BY B, X WITHIN A BY B/

The X WITHIN A BY B term represents the regression slopes, which are different for each
cell.

The same procedure can be simply extended to multiple covariates. For a 2 X 2 design
with covariates Z1 and Z2, the X term is replaced by CONTIN(Z1,Z2) throughout the
DESIGN specification discussed above. The keyword CONTIN incorporates Z1 and Z2 into a
single effect. Thus the following specfications may be used for the analysis of covariance for
model 1 with covariates Z1 and Z2.

MANOVA Y Z1 22 BY A(1,2) B(1,2)/
ANALYSIS=Y/
DESIGN=Z1, Z2, A, B, A BY B,
CONTIN(Z1,22) BY B + commtm.zz)ivsc gv B/

DESIGN=CONTIN(Z1,Z2) WITHIN A, A, B, /
DESIGN=A, B, A BY B, CONTIN(Z1,Z2) WITHIN A/

The first DESIGN specification is used to test the model, while the second and third models
are for the analysis of covariance.




An Example.

The following example is taken from Searle (1971, pp. 287,375). An experiment was
conducted to compare the effects of three different types of fertilizer and four varieties of grain on
the weight of grain (WEIGHT). The milligrams of seed planted (MSEED) for each plot were also
recorded and used as the covariate. The SPSS commands and data for model 3 are presented in

Figure 1.18a, and the analysis of variance tables in Figure 1.18b.

Figure 1.18a
RUN NAME EMPTY CELLS EXAMPLE FROM SEARLE(1971).
COMMENT DATA ARE TAKEN FROM P. 287 AND P. 375.

VARIABLE LIST TREATMNT, VARIETY, WEIGHT, MSEED

N OF CASES 18
INPUT FORMAT  FREEFIELD
INPUT MEDIUM  CARD

MANOVA WEIGHT MSEED BY TREATMNT(1,3). VARIETY(1,4)/

ANALYSIS=WEIGHT/

DESIGN = MSEED WITHIN VARIETY BY TREATMNT ,

VARIETY, TREATMNT, VARIETY BY TREATMNT/ :
DESIGN = TREATMNT, VARIETY, VARIETY BY TREATMNT,

MSEED WITHIN VARIETY BY TREATMNT/

READ INPUT DATA
8

TR RNI N NN = b
ZABMDBANUNDNNDNO B AW
[
'S
JNOHODONODNUANOAU-TUWHEN

—

Figure 1.18b

TESTS OF SIGNIFICANCE FOR WEIGHT USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION

WITHIN+RESIDUAL

CONSTANT

MSEED WITHIN VARIETY BY TREATMNT
VARIETY

TREATMNT

VARIETY BY TREATMNT

TESTS OF SIGNIFICANCE FOR WEIGHT USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION

WITHIN+RESIDUAL
CONSTANT

TREATMNT

VARIETY

VARIETY BY TREATMNT

MSEED WITHIN VARIETY BY TREATMNT

SUM OF SQUARES

4.30000
2178.00000
92.11472
5.31810
36.16611
.10107

SUM OF SQUARES

4.30000
2178.00000
10.50000
36.78571
34.71429
51.70000

o
-

QRGN

MEAN SQUARE

1.43333
2178.00000

MEAN SQUARE

1.43333
2178.00000
5.25000
12.26190
17.35714
7.38571

F

1519.53488
8.03326
1.23677

12.61609
.07051

1519.53488
3.66279
8.55482
12.10963
5.15282

SIG. OF F

SIG. OF F

.000
L1587
.056
.037
.103

1.19 Randomized Block Designs

In this design the experimental unit is divided into groups (blocks). The main object of this is to
keep the experimental errors within each group as small as possible. The accuracy of the
experiment is increased by making comparisons within the resulting relatively homogeneous
experimental units. The model for this design is

Yi=p+Bi+7+e

where B; is the block effect and 1; is the treatment effect.

MANOVA
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1.20 Complete Randomized Block Designs

A randomized block design is called complete if each block contains every level of the treatment.
Table 1.20 is an example of a complete randomized block design with four treatments, A, B, C,
and D, and three blocks. ’

Table 1.20

Block

olojw| >
Aa»jw|C
Oilw|O|>

Let Y, TRT, and BLK be the response, treatment, and block variables respectively. The
MANOVA commands needed to perform the analysis of this design are
MANOVA Y BY BLK(1.3) TRT(1,4)/
DESIGN=BLK, TRT/

In most applications the significance of the block differences is assumed, and treatment effects are
corrected for the block effects. (Although it does not make any difference here since the design is
balanced and complete, in general the treatment effects should be adjusted.)

1.21 Balanced Incomplete (Randomized) Block Designs (BIB)

In some randomized block designs it may not be possible to apply all treatments in every block. If
the block size is less than the number of treatments, the design is called incomplete. An incomplete
block design is called balanced if

« Each block contains exactly k treatments

« Each treatment appears in r blocks

» Any pair of treatments appears together A times

Thus a BIB can be described in terms of the parameters t (number of treatments), b (number of

blocks), k, r, and A.
Table 1.21 is an example of a BIB design witht=4,b=4,k=3,r=3,and\ = 2.

Table 1.21
Block
1 2 3 4
A D A B
B B D C
C A C D

The following example is taken from Cochran and Cox (1957, p. 443). It is a BIB design with
=6,b=15k=2,r=35, and A =1. The blocks are grouped into S replications.
The SPSS commands for this analysi$ are given in Figure 1.21a. The first design model
specification requests the blocks within replications adjusted for treatment effects. The second
model asks for the treatment effects adjusted for the blocks.
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Figure 1.21a
RUN NAME TYPE 1 BALANCED INCOMPLETE BLOCK DESIGN.
COMMENT DATA ARE TAKEN FROM COCHRAN & COX(1957).

VARIABLE LIST REPLICS, TREATMNT, BLOCKS, DEP

INPUT MEDIUM  CARD

INPUT FORMAT  FIXED(3F1.0,F2.0)

N OF CASES UNKNOWN

MANOVA DEP BY REPLICS(1,5), TREATMNT(1,6), BLOCKS(1,3)/
DESIGN = REPLICS, TREATMNT, BLOCKS W REPLICS/
DESIGN = REPLICS, BLOCKS W REPLICS, TREATMNT/

RE?D INPUT DATA

111 7

12117
13226
14225

54326
55332
56127
END INPUT DATA
FINISH

The ANOVA tables from the output for Figure 1.21a are given in Figure 1.21b.

Figure 1.21b

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SQURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE
RESIDUAL 77.33333 10 7.73333
CONSTANT 19712.03333 1 19712.03333
REPLICS 298.46667 4 74.61667
TREATMNT 1059.76667 5 211.95333
BLOCKS W REPLICS 213.40000 10 21.34000
TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE
RESIDUAL 77.33333 10 7.73333
CONSTANT 19712.03333 1 19712.03333
REPLICS 298.46667 4 74.61667
BLOCKS W REPLICS 753.00000 10 75.30000
TREATMNT 520.16667 5 104.03333

2548.

13.

.96983
.64871
.40776
.75948

SIG. OF F

SIG. OF F

0.0
.002
.001
.000

1.22 Partially Balanced Incomplete Block Désigns (PBIB)

Because balanced incomplete block designs often require a large number of blocks, it may not be
possible to find a design that fits the size of the experiment. A general class of BIB designs that do
not have the uniform variances for treatment contrasts but still permit the estimation of treatment

differences are the partially balanced incomplete block designs.

Consider the design in Tabie 1.22, witht = 20,k = 4,r = 2 and b = 10. Recall that for a BIB
design any pair of treatments must appear together A times. In this design, some treatments occur
together in the same blocks and some do not. This is the main difference between BIB and PBIB

designs.
Table 1.22
Blocks
1 2 3 4 5 6 7 8 9 10
A M E Q I A B C D E
B N F R J K L M N (o}
C (0] G S K F G H I J
D |7 P H T L P Q R S T

MANOVA
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PBIB designs represent a
Cox (1957). An example with t

large class of designs, many of which ca

n be found in Cochran and

=15,b =15k =4, and r = 4 is given on p. 456 of that text. The

MANOVA commands and the output ANOVA table are given in Figure 1.22a and Figure 1.22b.

Figure 1.22a
RUN NAME 15 X 15 PARTIALLY BAL. INC. BLOCK DESIGN.
COMMENT DATA ARE TAKEN FROM COCHRAN & COX(1957) P.456.
VARIABLE LIST BLOCKS, TREATMNT, DEP

INPUT MEDIUM CARD

N OF CASES UNKNOWN

INPUT FORMAT FIXED(ZFZ.O,BX.FS.O)

MANOVA DEP BY BLOCKS(1,15), TREATMNT(1,15)/

DESIGN = BLOCK

READ INPUT DAT
11
19
113
115
21

S, TREATMNT/

pONNN
QOO

15 4
15 8
1510

—aro

2
3.
2
1511 3
END INPUT DAT
FINISH

A

Figure 1.22b

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SI1G. OF F
RESIDUAL 2.68589 31 .08664

CONSTANT 448.26654 1 448.26654 5173.80518 0.0
BLOCKS 4.92333 14 .35167 4.06887 .001
TREATMNT 1.56411 14 .11172 1.28948 .268

1.23 Latin and Other Squares

A Latin square is a design in which each treatment appears exactly once in each row and column.
The main interest is still on the estimation of treatment differences, but two restrictions are put on
the randomization of the treatment assignment. The model of this design is

Yo =wtoai+ Bt vt €

example of a 4 X 4

where a;, B; and v are the row, column and treatment effects respectively. An

Latin square is shown in Table 1.23a.

Table 1.23a

MANOVA specifications may be used to analyze a 4 X 4 Latin square.

Y BY ROI(I,A),COL(1.4).TRT(1,4)I
DESIGN=ROW.COL.TRT/

The following
MANOVA




If another restriction on the randomization is placed o a Latin square, we have a Graeco-Latin
square. Table 1.23b exhibits a 4 X 4 Graeco-Latin square.

Table 1.23b
Column
1 2 3 4
1 A b B a DB C vy
2 By AB Ca D3
Row
3 CB Dy B3 A«
4 D a C s Ay BB

In this design the third restriction has levels «, B, v, 8. Note that a, B, vy and 8 not only each
appear exactly once within each row and column, but they also appear exactly once with each level
of treatments A, B, C, D. The Graeco-Latin square can be constructed by superimposing an
orthogonal (same size) Latin square on the original Latin square. In other words, the third
restriction factor along with column and row is also a 4 x 4 Latin square. It has treatments a, B, v,
8 and is orthogonal to the original Latin square with treatments A, B, C, and D. Here
orthogonality means each letter in one Latin square appears exactly once in the same position as
each letter of the other square.

The analysis of variance for a Graeco-Latin square is very similar to that for a Latin square.
Let GREEK denote the third restriction factor on a 4 x 4 Graeco-Latin square. The MANOVA
specifications would be

MANOVA Y BY ROW(1,4), COL{1,4), GREEK(1,4), TRT(1,4)/
DESIGN=ROW, COL,GREEK, TRT/

Note that a small Graeco-Latin square design may not be very practical, since very few degrees of
freedom are left for the residual. S

1.24 Factorial Designs

In a factorial design, the effects of several different factors are investigated simultaneously.
Suppose we wish to study the effects of two factors on the yield of a chemical. The first factor is
temperature at 100°F, 200°F, and 300°F. The other factor is pressure at 20 psi and 40 psi. This
experiment is a two-factor factorial design with three levels for the first factor and two levels for the
second. The treatments for this experiment are the 6 combinations of the levels of the factors. The
model for the 3 x 2 factorial design is

Yoo =+ ai + B + (aB)y + €

where a; is the temperature effect, B; is the pressure effect, and (ap); is the temperature-pressure
interaction.

A factorial experiment containing one observation per cell (treatment) constitutes one
replicate of the design. The design may be replicated k times in two possible ways. If each
observation has different experimental conditions for replications within cells (e. g., each replicate
is a block), the design is crossed by another factor within k levels (i.e., block effect). If the
experimental condition is the same for the replications within cells, the number of factors remains
unchanged, and the variation within cells is attributed to the error.

The following example illustrates the use of MANOVA to perform the analysis of a 4 x 4 x 3
factorial in randomized blocks (two blocks) with a covariate. The data are taken from Cochran and
Cox (1957, p. 176). ‘

The model contains the main effects (NTREAT, LENPER, CURRENT), all two-way
interactions (NTREAT BY LENPER,....LENPER BY CURRENT), and the three-way interac-
tion (NTREAT BY LENPER BY CURRENT). The SPSS commands for this analysis are shown
in Figure 1.24a and the analysis of variance table in Figure 1.24b.
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Figure 1.24a

RUN NAME 4%4*3 FACTORIAL IN RANDOMIZED BLOCKS.

COMMENT 4*4+*3 FACTORIAL IN RANDOMIZED BLOCKS WITH

COVARIATE. FROM COCHRAN AND COX(1957) PAGE 176.

VARIABLE LIST REPLIC,LENPER, CURRENT,NTREAT,Y.X

INPUT MEDIUM  CARD

INPUT FORMAT FIXED(4F1.0,F2.0,F3.0)

N OF CASES 96

IF (LENPER EQ 5) LENPER = 4

IF (NTREAT EQ 3) NTREAT = 2

IF (NTREAT EQ 6) NTREAT = 3

MANOVA Y BY REPLIC(1,2), LENPER(1,4), CURRENT(1.4),

NTREAT(1,3) WITH X/
DESIGN = REPLIC,NTREAT.LENPER, CURRENT,NTREAT BY LENPER,
NTREAT BY CURRENT, LENPER BY CURRENT,
NTREAT BY LENPER BY CURRENT/

READ INPUT DATA

111172152

111374131

111669131

112161130

112361129

112665126

113162141

113365112

113670111

114185147

114376125

114661130

121167136 . .

121352110 .

121662122

122160111

254159102

254358 98

254688135

FINISH
Figure 1.24b
TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES
SOURCE OF VARIATION SUM OF SQUARES DF MEAN SQUARE F SI1G. OF F
RESIDUAL 2211.96526 46 48.08620
REGRESSION 987.52432 1 987 .52432 20.53654 .000
CONSTANT 1316.19933 1 1316.19933 27.37166 0.0
REPLIC .27456 1 27456 .00571 .940
NTREAT 441.20522 2 220.60261 4.58765 .018
LENPER 180.52285 3 60.17428 1.25138 .302
CURRENT 4 2111.03300 3 703 .67T767 14.63367 0.0
NTREAT BY LENPER 211.79056 6 35.29843 . 73407 .625
NTREAT BY CURRENT 467.84848 6 T7.97475 1.62156 . 163
LENPER BY CURRENT 404.37365 9 44.93041 93437 .505
NTREAT BY LENPER BY CURRENT 1021.61800 18 56.75656 1.18031 .315

1.25 Nested Designs

A nested design arranges the experimental units hierarchically. For example, consider an
experiment to compare the yield of wheat per acre for different areas in a given state. Five counties
are selected at random, then three townships are randomly selected from each county. From each
township two farms are selected and the yield of wheat per acre is obtained. The resuiting
experiment produces 5 X 3 x 2 = 30 experimental units. The factors of this experiment are county
and township, and the township effects are nested under the county factor, since a given township
appears only under one of the five counties. In other words, the county factor is not crossed with
township factor and so the interaction between county and township is not estimable.
The model for this two-factor nested design is

Yljk =n + a; + B)(l) + €k

where a, is the county effect and By is the township effect nested under the county effect.




Since a; should be tested against variation within a;, i.e., Byy, the following MANOVA
specfications can be used:

MANOVA Y BY COUNTY{1,5).TOWN(1,3)/
DESIGN=COUNTY VS 1, TOWN WITHIN COUNTY=1 VS WITHIN/

Note that the first keyword WITHIN (or just W) indicates nesting. The DESIGN specification
requests that COUNTY be tested against the error 1 term, which is the effect of TOWN (nested
within COUNTY), and that the within-cells error term (second WITHIN) be used for testing the
TOWN effect.

When crossing and nesting are both used in the design, attention must be paid to the choice of
appropriate error terms for testing the various effects. Consider a three-factor example, with
factors A, B, and C. If :

1 Cis nested within B, and B is nested within A, the model is
Yie = i + o + Byiy + Vaeip + €

The DESIGN specification should be
DESIGN=A VS 1, B W A=1 VS 2, C W B W A=2 VS WITHIN/

2 Cis nested within B, and B is crossed with A, the model is

Yoo = p + o + B + (aB)y + vy + (a¥)ucy + €t

The rule for writing down the model is that no interaction in which the subscript j appears
twice is in the model. For example, interactions (Bvy)j and (ap+y)ix; do not exist.

Since C is nested within B, B; is tested against vy, ;. The appropriate error term for o; and
(aB); is the residual of the A-B two-way table, (ay)ij, which is the interaction effect of a; and
Yu- If the number of observations per cell is greater than one, then (ay)u;) and y; can be
tested against the within-cells error term. The DESIGN specification for this model is

DESIGN=A VS 2, B VS 1, C W B=1 VS WITHIN,
A BY BVS 2, ABYCW B=2VS WITHIN/

3 Cis crossed with B, and B is nested within A. The model and the DESIGN specification are
the same as those in (2) except for the names of the effects.

An experiment (Hicks, 1973, p. 195) was conducted to compare a new gun-loading method with
the existing one (factor METHOD). Three teams were chosen randomly from each of three
groups. Each team used the two methods of gun loading in random order. The data and SPSS
commands for the analysis are as given in Figure 1.25a, and the ANOVA table is presented in
Figure 1.25b.

Figure 1.25a
RUN NAME NESTED DESIGN.
COMMENT DATA ARE TAKEN FROM HICKS(1973) P. 194.
COMMENT METHOD : 2 LEVELS CROSSEL WITH GROUP.
COMMENT GROUP : 3 LEVELS.
COMMENT TEAM : 3 LEVELS NESTED WITHIN GRQUP.
COMMENT NUMBER OF OBSERVATIONS PER CELL = 2.
VARIABLE LIST GROUP,TEAM,METHOD, RESP
N OF CASES UNKNOWN

INPUT FORMAT  FREEFIELD

INPUT MEDIUM  CARD

MANOVA RESP BY METHOD(1,2),GROUP,TEAM(1,3)/
DESIGN=METHOD VS 1,GROUP VS 2,
METHOD BY GROUP VS 1,TEAM W GROUP=2,
METHOD BY TEAM W GROUP=1/

READ INPUT DATA
11120.2
11124.1
112 14.2
11216.2
12126.2
12126.9
33121.8

33 123.5
33212.7
33215.1

END INPUT DATA
FINISH
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Figure 1.25b

TESTS OF SIGNIFICANCE FOR RESP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 41.58993 18 2.31055

CONSTANT 13455.99443 1 13455.99443 5823.71557 0.0
ERROR 1 10.72164 6 1.78694

METHOD 651.95062 1 651.95062 364.84200 0.0
METHOD BY GROUP 1.18721 2 .59361 .33219 .730
ERROR 2 39.25829 6 6.54305

GROUP . 16.05166 2 8.02583 1.22662 .358

1.26 Confounding Designs

In some factorial designs it may not be possible to apply all factor combinations in every block.
Two methods can be used to handle this problem. The first one is the BIB designs discussed in
Section 1.21. Another method for circumventing this difficulty is to reduce the size of a block by
sacrificing the estimation of certain higher-order interactions. Consider a 2 x 2 x 2 factorial
_experiment, with factors A, B, and C. Let abc denote the experimental unit with all three factors at
the high level (since each factor has two levels, one is low and one is high), ab denote the unit
where A and B are at the high level and c is at the low level. Thus if a letter appears, that factor is
at the high level; otherwise, it is at the low level. When all factors appear at the low level it is
designated by (1). Suppose we arrange the 2 x 2 x 2 factorial in two blocks as in Table 1.26a.

Table 1.26a

Block

-]
»|

abc | ab

ac

[=]=

__7
o
g

Lo a

 The effect of A is estimated by comparing the observations receiving high and low levels of A,
ie.,

|

-

I_

abc+t+a+ab+ac-b—-c—-bc—-(1)

and so on.
Note that the ABC interaction is estimated from the comparison '

abc+a+b+c—ab-ac—-bc—-(1)

which is the same as the difference between blocks 1 and 2. Hence we cannot distinguish between
the block effects and the ABC interaction. The ABC interaction is said to be confounded with the
block effect.

If this experiment were replicated four times, the layout might be as shown in Table 1.26b.

Table 1.26b
Replication 1 Replication 2 Replication 3 Replication 4
Block Block Block Block
IRl 1| 2 1 2 1 2]
abc i ab l abc ()] bc b c ab
a { ac | b be ac a __b‘4 ac
b be 1 a ac ab c abc 1)
- el
cl \(1) ‘ c I ab 1) abc a be t

Since the confounded effect (ABC) is the same for all four replications, ABC is completely
confounded with blocks. The MANOVA specifications needed for this example are

MANOVA Y BY REPLIC(1,4), BLOCK(l,2), A, B, C(1,2)/
DESIGN=REPLIC,BLOCK W REPLIC, A, B, C, A BY B, A BY C, B BY C/




Note that the model does not include A BY B BY C, which is confounded with BLOCK W
REPLIC.

It is'possible to test the ABC interaction if some interaction other than ABC is confounded in
some of the replications. One possible layout would be that given in Table 1.26c.

Table 1.26¢
Replication 1 Replication 2 Replication 3 Replication 4
Block Block Block Block
1 2 1 2 1 2 | 2
abc ab b ab ac ab ac a
a ac a c (¢))] be ab be
b be ac ) abc | a b labe |
K (M | be abe b | ¢ c| ()

In replication 1, ABC is confounded with blocks. In replication 2, the AB interaction is
confounded with blocks. For replications 3 and 4, AC and BC are confounded.

For this example, A, B, and C are free of the block effects and three-fourths information for
AB, AC, BC, and ABC can be obtained, since the unconfounded interactions can be estimated in
three out of four of the replications. Hence we say AB, AC, BC, and ABC are partially
confounded with blocks. The MANOVA specifications for this 2 X 2 x 2 factorial with partial
confounding are

MANOVA Y BY REPLIC(1,4), BLOCK(1.2).A, B, cu 2)/

DESIGN=REPLIC.BLOCK W REPLIC, A, B, C, A BY B, A BY C,
B BY C, A BY BBY C/

More complex confounding designs can be found in Davies (1954) and Cochran and Cox (1957).

Another Example The following example is taken from Cochran and Cox (1957, p. 205). The

data are a 3 X 3 X 2 factorial in blocks of six units with three blocks in each of four replications.
Interactions AB and ABC are partially confounded with blocks. The SPSS commands for this
analysis are given in Figure 1.26a.

Figure 1.26a
RUN NAME CONFOUNDING IN MIXED SERIES.
COMMENT CONFOUNDING IN MIXED SERIES. 3*3*2 FACTORIAL
COMMENT FROM COCHRAN AND COX(1957) P. 205
COMMENT SECOND ANALYSIS GIVES AB TWO-WAY TABLE ADJUSTED FOR BLOCK
COMMENT THIRD ANALYSIS GIVES AC TWO-WAY TABLE ADJUSTED FOR BLOCKS
COMMENT
COMMENT FACTOR A : 8-8-6 FERTILIZER APPLIED IN THE ROW
COMMENT 3 LEVELS —— O (NONE), 1 (200 LB.), 2 (400 LB.)
COMMENT FACTOR B : MEALS, 3 LEVELS — 0 (NONE), 1 (TUNG MEAL),
COMMENT 2 (COTTONSEED MEAL) .
COMMENT FACTOR C : 8 8—6 FERTILIZER APPLIED AS SIDE—DRESSING
COMMENT 2 LEVELS —— 0 (NONE), 1 (200 LB.).

VARIABLE LIST REPLICS,BLOCKS,A,B,C,DEP
INPUT MEDIUM  CARD
INPUT FORMAT FIXED(2X,5F1.0,8X,F3.0)

N OF CASES 72
MANOVA DEP BY REPLICS(1,4),BLOCKS(1,3),A(0,2), B(O 2) C(0,1}/
DESIGN = REPLICS,BLOCKS WITHIN REPLICS, A
ABY BBABYC, BBYC, ABYB BY C/
DESIGN = REPLICS,BLOCKS W REPLICS,CONSPLUS A AND B/
DESIGN = REPLICS,BLOCKS W REPLICS,CONSPLUS A AND C/
READ INPUT DATA
11011 82
11020 70
11100 80
11121 86
11201 74
11210 86
12001 67

12010 55

42210 66
43001 90
43010 58
43100 81
43121 67
43211 68 ~
43220 56
FINISH N
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The first DESIGN specification requests an analysis of variance for this experiment (Figure
1.26b).

| Figure 1.26b

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION . SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 8909.36190 43 207.19446
CONSTANT 461120.05556 1 461120.05556 2225.54237 0.0
REPLICS 3836.61111 3 1278.87037 6.17232 .001
BLOCKS WITHIN REPLICS 2836.33333 8 354.54167 1.71115 123
1116.02778 2 $68.01389 2.69319 .079
B 253.69444 2 126.84722 .61221 .547
C 868.05556 1 868.05556 4.18957 .047
A BYB ' 1129.34921 4 282.33730 1.36267 .263
A BY C 2995.02778 2 1497.51389 7.22758 .002
B BY C 423.52778 2 211.76389 1.02205 . 368
A BY B BY C 1015.95556 4 253 .98889 1.22585 .314

The second and third analyses give the AB and AC two-way means adjusted for the block
effects (Figure 1.26c). For more information about the use of CONSPLUS to obtain marginal
means and summary tables, see Section 1.50.

Figure 1.26¢c

CONSPLUS A AND B

PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
12 72.1964285714 6.02764 11.97757 0.0 60.10109 84.29176
13 73.2261904762 6.02764 12.14841 0.0 61.13086 - 85.32152
14 79.7023809524 6.02764 13.22283 0.0 67.60705 91.79771
15 86.7738095238 6.02764 14.39600 0.0 74.67848 98.86914
16 87.8035714286 6.02764 14.56684 0.0 75.70824 99.89891
17 79.4226190476 6.02764 13.17641 0.0 67.32729 91.51795
18 89.0297619048 6.02764 14.77026 0.0 76.93443 101.12510
19 74.3452380952 6.02764 12.33406 0.0 62.24990 86.44057
20 77.7500000000 6.02764 12.89892 0.0 65.65467 89.84533

CONSPLUS A AND C

PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
12 62.5833333333 4.21611 14.84385 0.0 54.13406 71.03261
13 87.5000000000 4.21611 20.75372 0.0 79.05073 95.94927
14 84.3333333333 4.21611 20.00264 0.0 75.88406 92.78261
15 85.0000000000 4.21611 20.16076 0.0 76.55073 93.44927
16 82.7500000000 4.21611 19.62709 0.0 74.30073 91.19927
17 78.0000000000 4.21611 18.50046 0.0 69.55073 86.44927

1.27 Split-plot Designs

In many factorial designs, it may not be possible to completely randomize the assignment of
treatments to the experimental unit. Consider, for example, an experiment to compare three
varieties of wheat (factor A) and two different types of fertilizer (factor B). Three locations are
selected as blocks. Three levels of A are randomly assigned to plots of equal area within each
block. After A is assigned, each plot is ““split” into halves (called subplots) to receive the random
assignment of B. What is the difference between a complete 3 X 2 factorial and the 3 X 2 split-plot
design? In a 3 x 2 factorial, each block is divided into six subplots to receive the random
assignment of treatment combinations of A and B. In the split-plot design, two treatment
combinations that have the same level of A are always in the same plot. If the subplot is considered
the experimental unit, the plot is a “small” block of size 2. The differences among these “‘small”
blocks are the differences between levels of A, since the main effects of A are confounded. A
split-plot design is a design in which certain main effects are confounded.

Intuitively, the variation of plots within A should be used as the error term to test for the main
effects of A. The effects of plot within A can be partitioned into two parts. One is the block effects
and another is the block and A interaction. Thus the model for a split-plot design is

Yoo = 1+ ai + B + (aB)u + v + (ay)y + €

where o, is the A effect, B, is the block effect, (aB)x is the interaction of A and block and is the
error term for testing A, v; is the B effect, (ay);; is the AB interaction, and e is the residual used as
the error term for testing B and AB.

Another model is

Yie = m+ o+ B + (@Bl + v + (av)y + (BY)i + (aBy)in + € :




ke
-3

(B)j is the error term for v;, (aBYy)x is the error term for (ay)y, and if the number of observations
per cell is greater than 1, then ()i, (BY)x and (aBy);: can be tested against the within-cells error.

The following MANOVA specifications may be used to perform an analysis of variance of a 3
x 2 split-plot design:

MANOVA Y BY BLOCK(1,3), A(1,3), B(1,2)/
DESIGN=BLOCK, A VS 1, A BY BLOCK=1, B, A BY B/

In the above DESIGN specification, effect A is tested against the error 1 term which is the
interaction of A and BLOCK. Effects B and AB are tested against the residual, since there is no
within-cells error in this example.

This type of design can be extended by subdividing each subplot into sub-subplots, etc. The
model for a split-split-plot design would be

Yiu = ptai+ Bt (aB)it v+ (ey)i+ i+ e+ (ad)u+ (¥8)ju+ (ayd)iju + €u

where 8, is the effect for the sub-subplot factor, wy = subplot residual = (yB)j + (ay)si, € is the
residual, and (aB)q, iy, and € are the appropriate error terms for plot, subplot, and sub-subplot
factors, respectively.

An example of a split-split-plot design is taken from Hicks (1973, p. 223). The SPSS
commands are given in Figure 1.27a.

Figure 1.27a
RUN NAME SPLIT-SPLIT~PLOT DESIGN. .
COMMENT DATA ARE TAKEN FROM HICKS(1973) PAGE 223.
COMMENT LAB : THREE DIFFERENT LABORATORIES--PLOT FACTOR.
COMMENT TEM : THREE LEVELS OF TEMPERATURE~-SUB-PLOT FACTOR.
COMMENT MIX : THREE TYPES OF MIX—SUB-SUB-PLOT FACTOR.
COMMENT FOUR REPLICATES (BLOCK).
VARIABLE LIST BLOCK LAB TEM MIX RESP
N OF CASES UNKNOWN

INPUT FORMAT FIXED(4F1.0,1X,F4.1)
INPUT MEDIUM  CARD
MANOVA RESP BY BLOCK(1.,4),LAB,TEM,MIX(1,3)/
DESIGN=BLOCK,LAB VS 1,LAB BY BLOCK=l,

TEM VS 2,LAB BY TEM VS 2,TEM BY BLOCK+

LAB BY TEM BY BLOCK=2,

MIX,LAB BY MIX,TEM BY MIX,LAB BY TEM BY MIX/
READ INPUT DATA
1111 18
1112 14.
1113 21.
1121 9.
1122 7
1123 11.
1131 5.
1132 6.
1133 6.
1211 20.
1212 18.
1213 22.

DNBOANBN®DG DO

4321
4322
4323 1
4331
4332
4333
END INPUT DATA
FINISH

[¢ X R (o R (o]
DVHODHON

As can be seen from the DESIGN specification, the interaction of LAB and BLOCK is the
error term for the plot factor LAB, the interaction of TEM and BLOCK and the interaction of
LAB, TEM, and BLOCK are pooled together as the error term for the subplot factors. The
sub-subplot factors are to be tested against the residual. The analysis of variance from the output
for this run is shown in Figure 1.27b.

-~

MANOVA
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Figure 1.27b

TESTS OF SIGNIFICANCE FOR RESP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL . 13.40499 54 .24824

CONSTANT 14697 .66168 1 14697 .66168  59207.32736 0.0
BLOCK 9.41435 3 3.13812 12.64143 0.0
MIX 145.71785 2 72.85893 293.50127 0.0
LAB BY MIX . 33926 4 .08482 .34167 .849
TEM BY MIX 43.68696 4 10.92174 43.99659 0.0
LAB BY TEM BY MIX 1.07740 8 . 13467 .54252 .819
FRROR 1 16, lO9HY G 2.68497

LAB 40.66356 2 20.33178 7.57244 .023
ERROR 2 9.88335 18 .54907

TEM 3119.50650 2 1559.75326 2840.69330 0.0
LAB BY TEM 4.93650 4 1.23412 2.24764 .104

If different treatments are applied in sequence to the same unit, residual or carry-over effects may
be present in the experiment. By including dummy factors, MANOVA cnables the user to perform
an analysis of variance with residual clfects.

The following example is taken from Cochran and Cox (1957, p. 133). The experiment
compares three feeding methods (A, B, and C) on the milk yield of dairy cows. The experiment
consists of two 3 x 3 Latin squares. The rows of the squares represent the successive periods of
application, while the columns represent the cows. The data are as follows:

1.28 Analysis of Carry-over Effects
1
|
|

Squére 1 Square 2
| Cowl Cow2 Cow3 Cow4 Cow5 Cowé
| Period 1 A(38)  B(109)  C(124) A@B6)  B(75)  C(101)
| Period2 B(25)  C(86)  A(72) C(16)  A(35)  B(63)
| Period 3 C(15)  A(39)  B(Q7) B(46) C(34) A1)

In addition to the direct (treatment) effects T,, 7, and ., the treatments also contain the residual
effects 14, r», and r. for the period immediately following the one in which they are applied. Thus for
cow 2 in the third period, the expected total treatment effect is 7, + r, since A is applied in this
period and C in the preceding period. Similarly, the expected total treatment effect is 7, + 1, for
cow 2 in the second period.

If we let CEFFECT be the (dummy) factor of residual effects and assign

CEFFECT = 1 if no residual effects
2 if 1, is the residual effect
3 if ry is the residual effect
4 if r. is the residual effect

then the values of CEFFECT in this example would be

] Square 1 Square 2

3

; ‘ Cow 1 Cow 2 Cow 3 Cow 4 Cow 5 Cow 6
Period1 1 1 1 1 1 1
Period2 2 3 4 2 3 4
Period 3 3 4 2 4 2 3

If the effects of CEFFECT are divided into groups using the following contrasts:
(1 1 1 1)

(3 -1-1-1)
(0 2-1-1)
(0 0 1 -1)

and the pooled effect of second and third contrasts is CEFFECT(2), then CEFFECT(2) can be
used to obtain a test of r, = r, = r.. Since the second contrast (0, 2, -1, -1) specifies a teston r, = (rs
+ 1.)/2, and the third contrast (0, 0, 1, -1) a test of =T, jointly they test the hypothesis r, = 1, = re.
The above can be done by using the following MANOVA specifications.
CONTRAST (CEFFECT)=SPECIAL(1 1 1 1, 3 -1 -1 -1,
02-1-1,001-1)/
PARTITION (CEFFECT)=(1,2)/




MANOVA 29

The CONTRAST subcommand indicates the contrast coefficients for factor CEFFECT. The

PARTITION subcommand divides the CEFFECT factor into 2 groups for the contrasts. The first

group has one degree of freedom with the contrast (3, -1, -1, -1). The second group (CEFFECT(2))

corresponds to the second and third contrasts lumped together and has two degrees of freedom.
The complete MANOVA command file is given in Figure 1.28a.

Figure 1.28a
RUN NAME ANALYSIS OF VARIANCE WITH CARRY-OVER EFFECTS.
COMMENT DATA IS TAKEN FROM COCHRAN AND COX(1957) PAGE 135.

CEFFECT REPRESENTS THE CARRY-OVER EFFECTS.
CEFFECT=1 IF NO RESIDUAL EFFECTS.
2 IF RESIDUAL EFFECT A.
3 IF RESIDUAL EFFECT B.
4 IF RESIDUAL EFFECT C.
VARIABLE LIST PERIOD,COW,SQUARE, TREATMNT, CEFFECT, DEP
INPUT MEDIUM  CARD
INPUT FORMAT FIXED(2X,5F1.0,F10.0)
N OF CASES 18
MANOVA DEP BY PERIOD(1,3),COW(1,6),SQUARE(1,2),
TREATMNT(1,3). CEFFECT(1,4)/

CONTRAST(CEFFECT) = SPECIAL(1 111, 3 -1 -1 -1,
02-1-1,001-1 )/

PARTITION(CEFFECT) = (1,2)/

DESIGN = COW, PERIOD WITHIN SQUARE,
CEFFECT(2), TREATMNT/
DESIGN = COW, PERIOD WITHIN SQUARE,
TREATMNT, CEFFECT(2)/
READ INPUT DATA
11111

38.
12121 109.
13131 124.
14211 86.
15221 75.
16231 101.
21122 25.
22133 86.
23114 72.
24232 76.
25213 35.
26224 63.
31133 15.
32114 39.
33122 27. .
34224 46.
35232 34.
36213 1.

FINISH

In the first DESIGN specification, treatment effects are adjusted for the residual effects, and
the converse holds in the second DESIGN specification. The ANOVA summary tables for both
models are given in Figure 1.28b.

Figure 1.28b

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 199.25000 4 49.81250

CONSTANT 61483.55556 1 61483.55556 1234.29974 0.0
cow 5781.11111 5 1156.22222 23.21149 .005
PERIOD WITHIN SQUARE 11489.11111 4 2872.27778 5§7.66179 .001
CEFFECT(2) 38.42222 2 19.21111 . 38567 . .703
TREATMNT 2854.55000 2 1427.27500 . 28.65295 .004

TESTS OF SIGNIFICANCE FOR DEP USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 199.25000 4 49.81250

CONSTANT 61483.55556 1 61483.55556 1234.29974 0.0
cow 5§781.11111 5 1156.22222 23.21149 005
PERIOD WITHIN SQUARE 11489.11111 4 2872.27778 57.66179 .001
TREATMNT 2276.77778 2 1138.38889 22.85348 .006
CEFFECT(2) 616.19444 2 308.09722 6.18514 .060

Note that in this example, the number of observations receiving r,, 1,, and r. are equal (4). If
the design is not balanced with respect to residual effects, contrast coefficients for unequal numbers
of replicates must be used to create the desired residual effects.
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1.29 Tukey’s Test for Nonadditivity

In factorial designs with only one observation per cell there is no within-cell error and thus no
direct estimate of the experimental error. Frequently, the highest-order interaction is assumed to
be part of the experimental error and its mean square is used to provide a denominator for F tests
on the remaining model terms. One method of checking the tenability of this no- interaction
assumption is provided by Tukey’s test for nonadditivity (Tukey(1949)).

SPSS-MANOVA can perform Tukey’s test by using the fact that Tukey’s sum of squares for
nonadditivity is the linear > lincar component of interaction in the metric of the estimates of the
math etfects (see Winet(1971) page 395). Tuhey's tost requites two sepatate tuns:

1 The first run obtains main effect parameter estimates using an additive main cffects model.
_ 2 The second run uses the parameter estimates from the first run as the metric in polynomial
contrasts for the factors; the design specifies a lincar X linear single-degree-of-freedom
mteraction term whiclh actually provides the sum of squintes for Tiukey's fest.

To illustrate this procedure consider the data in Table 1.29 taken from Winer(1971), page 474.
These data comprise a 3 X 4 factorial with one observation per cell.

Table 1.29
4
B
1 2 3 4
: 1 8 12 16 20
! A 2 2 2 14 18
3 5 4 9 Y

First, estimates of main effects are computed by using the following MANOVA specifications.

i -MANOVA Y BY A(1.3) B(1,4)/
PRINT=PARAMETERS ( NEGSUM) /
P DESIGN= A, B/

The PRINT=FARAMETERS(NEGSUM) results in the printing of the estimate of the last main
effect as the negative sum of the previous estimates. The default deviation'contrast must be used to
get these estimates. Figure 1.29a displays the estimates.

i Figure 1.29a
L
1 ESTIMATES FOR Y
4 CONSTANT
i PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
Y 1 11.0000000000 .84984 12.94366 .000 8.92054 13.07946
i A
4
: PARAMETER COEFF . STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
¥ 2 3.0000000000 1.20185 2.49615 .047 .05919 5.94081
3 ~2.0000000000 1.20185 ~1.66410 .147 —4.94081 .94081
4 -1.0000000000 . . . . .
. .
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
g 4 -6.0000000000 1.47196 -4.07620 .007 -9.60174 ~2.39826
5 ~5.0000000000 1.47196 -3.39683 .015 -8.60174 -1.39826
6 2.0000000000 1.47196 1.35873 .223 -1.60174 5.60174
7 9.0000000000 . . . . . .

In the second run, orthogonal polynomial contrasts for each factor are requested. The metric
] for each factor consists of the parameter estimates for that factor’s categories produced by the
initial run:

CONTRAST (A)=POLYNOMIAL(3 -2 ~1)/
: CONTRAST (B)=POLYNOMIAL(—-6 -5 2 9)/
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Each factor is then partitioned so that the first partition contains the linear component of the
orthogonal polynomial contrast:

PARTITION(A)/
PARTITION(B)/

Lastly, the design specifies a main effects model along with the linear X linear component of the
interaction:

DESIGN=A, B, A(l) BY B(l)/

The resulting ANOVA table appears in Figure 1.29b.

Flgur’ 1.29b

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 34.33855 S 6.86771

CONSTANT 1452.00000 1 1452.00000 211.42418 .000
A 56.00000 2 28.00000 4.07705 .089
B 438.00000 3 146.00000 21.25890 .003
A(1l) BY B(1) 17.66145 1 17.66145 2.57166 .170

The F test for the A(1) BY B(1) interaction is Tukey’s test for nonadditivity.
Note that Tukey’s test for nonadditivity can be extended to higher-order factorial experiments.

1.30 Simple Effects

The presence of a significant interaction in a two-way design precludes the testing of the main
effects. Instead, the effect of one factor differs at each level of the other factor. Frequently one may
wish to test the significance of these differential effects. Such tests are generally called tests of
simple effects.

Simple effects can be tested in SPSS-MANOVA by using the nesting facility of the DESIGN
subcommand. As an example, consider the data presented in Figure 1.2 for which the ANOVA
table appears in Figure 1.3a. Here the interaction is significant at the 0.006 level. Simple effects
tests are desired to examine the category differences for each of the drugs. The foliowing DESIGN
subcommand accomplishes this:

DESIGN=DRUG, CAT WITHIN DRUG(1

). CAT WITHIN DRUG(Z2).
CAT WITHIN DRUG(3)/

Here CAT WITHIN DRUG(1) tests the difference in means between category 1 and category 2 for
the first level of drug. Similarly, the two successive effects test for category differences for the
second and third drugs, respectively. Note that DRUG appears first in the design. This eliminates
any confounding effects of CAT. Figure 1.30a presents the output of this design.

Figure 1.30a

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  NEAN SQUARE F SIG. OF F
WITHIN CELLS 106.00000C 12 8.83333

CONSTANT 882.00000 1 882.00000 99.84906 0.0
DRUG 48.00000 2 24.00000 2.71698 .106
CAT WITHIN DRUG(1) 54.00000 1 54.00000 6.11321 .029
CAT WITHIN DRUG(2) 54.00000 1 54.00000 6.11321 .029
CAT WITHIN DRUG(3) 54.00000 1 54.00000 6.11321 .029

The simple effects of the three drugs within each category of patients can be tested in the same
manner.

In higher-order designs one may want tests of simple effects for both interactions and main
effects. For example, consider a three-way factorial design with factors A, B, and C, each with two
levels. Should the three-way interaction appear significant then an examination of the second-order
interaction terms at various levels of the third factor would be in order. To accomplish this, the
following DESIGN subcommands would be used:

DESIGN=A, B, C, A BY B, A BY C,
B BY C WITHIN A(l), B BY

DESIGN=A, B, C, A BY B, A BY C,
A BY B WITHIN C(1)., A BY

DESIGN=A, B, C, A BY B, A BY C,
A BY C WITHIN B(l). A BY

B BY C,
C WITHIN A(2)/

B BY C,
B WITHIN C(2)/

B BY C,
C WITHIN B(2)/

k)
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Test of simple main effects can be requested as well. To test factor A within the B BY C treatment
combinations the following DESIGN subcommand is used:
DESIGN=B, C, B BY C, A WITHIN B(l) BY C(1

(1),
A WITHIN B(1l) BY C(2), A WITHIN B(2) BY C(1),
A WITHIN B(2) BY C(2)/

It may also be desirable to compare two or more means at particular levels of another factor or
treatment combinations. For example, it may be interesting to compare the effectiveness of drug 1
with drug 2 within each patient category. Such comparisons can be performed by extending the
methods used for ordinary simple effects. The procedure is as follows:

1 Define a contrast incorporating the comparisons of interest such as

CONTRAST(DRUG)=SPECIAL(1 1 1 1 -1 0 2 -1 -1)/

2 Partition the factor into the desired components by specifying
PARTITION(DRUG) /

In subsequent designs, DRUG(1) will refer to the drug | versus drug 2 comparison. DRUG(2)
will refer to the drug 1 versus drugs 2 and 3 combined comparison.

3 Request regression-approach sums of squares by using
METHOD=SSTYPE(UNIQUE)/

This is mandatory even for orthogonal designs, because DRUG(1) and DRUG(2) are not
independent.

4 Specify the designs as for ordinary simple effects, but expand the simple effects terms
according to the CONTRAST/PARTITION specification:

DESIGN=CAT, DRUG(1) WITHIN CAT(l),
DRUG(1) WITHIN CAT(2),
DRUG(2) WITHIN CAT(1l),
DRUG(2) WITHIN CAT(2)/

Figure 1.30b presents the output for this design.

Figure 1.30b

TESTS OF SIGNIFICANCE FOR Y USING UNIQUE SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
WITHIN CELLS 106.00000 12 8.83333

CONSTANT 882.00000 1 882.00000 99.84906 0.0
CAT 18.00000 1 18.00000 2.03774 179
DRUG(1) WITHIN CAT(1l) 24.00000 1 24.00000 2.71698 .125
DRUG(2) WITHIN CAT(2) 18.00000 1 18.00000 2.03774 .179
DRUG(1) WITHIN CAT(2) 96.00000 1 96.00000 . 10.86792 .006
DRUG(2) WITHIN CAT(1) 18.00000 1 18.00000 2.03774 .179

1.31 MULTIVARIATE TESTS OF SIGNIFICANCE

1.32 Standard MANOVA Output

In the univariate F test, the Fvalue is a function of the ratio (SSH)/(SSE), where SSH is the sum of
squares due to the hypothesis and SSE the sum of squares due to error. Significance tests in
multivariate analysis of variance models are based on functions of the eigenvalues of the matrix
$,S.", where S, is the matrix of the sums of squares and cross products (SSCP) for the hypothesis
and S, is the SSCP matrix for the error. The MANOVA procedure computes four statistics used for
significance tests: Roy’s largest root, Wilks’ lambda, Hotelling’s trace, and Pillai’s criterion. (All of
these are functions of the eigenvalues.)

The MANOVA commands for the multivariate analysis are exactly the same as in the
univariate case, except that two or more response variables are specified instead of one. Figure
1.32a, given below, illustrates the use of MANOVA to analyze the dental calculus reduction data in
Finn (1974). The response variables in this example are RCAN, RLI, and RCI.




Figure 1.32a
4 RUN NAME DENTAL CALULUS DATA FROM FINN(1974) PAGE C-56
] FILE NAME DATA FOR ANTI-CALCULUS AGENT

VARIABLE LIST YEAR,TR,RCAN,RLI,RCI,LCI,LLI,LCAN
INPUT FORMAT FIXED(2F1.0,6F2.0)

3 N OF CASES 107
| . MISSING VALUES YEAR TO LCAN(BLANK) /
1 P MANOVA RCAN,RLI,RCI BY YEAR(1,2),TR(1,5)/

E 3 READ INPUT DATA
3 11221221

11000210
11004400
11222322
23013430
23101010

| 23010000

| 23016410

FINISH

Since no DESIGN specifications are given in Figure 1.32a, a full factorial model is assumed.
The standard output (without the PRINT subcommand) includes

1 General information about the design. This includes the number of observations, the number
of levels of each effect, and the redundant effects (if any) in the model. This output is given in
Figure 1.32b for the dental calculus data. (Three degrees of freedom are lost in the interaction
effect because of empty cells.)

Figure 1.32b

107 CASES ACCEPTED.
0 CASES REJECTED BECAUSE OF QUT-OF-RANGE FACTOR VALUES.
0 CASES REJECTED BECAUSE OF MISSING DATA.
7 NON-EMPTY CELLS.

CORRESPONDENCE BETWEEN EFFECTS AND COLUMNS OF BETWEEN-SUBJECTS DESIGN

. STARTING ENDING
; ) COLUMN  COLUMN  EFFECT NAME

1 1 CONSTANT

2 2 YEAR

3 6 TR

T 10 YEAR BY TR

p REDUNDANCIES IN DESIGN MATRIX

COLUMN EFFECT
8 YEAR BY TR
9 (SAME)
10 {SAME)

i 2 Multivariate tests of the significance of each effect in the model. The four test statistics
iy previously mentioned are given. Each of these statistics is a function of the nonzero
} eigenvalues \; of the matrix S,S.”. The number of nonzero eigenvalues, s, is equal to the

minimum of the number of dependent variables, q, and the degrees of freedom for the tested
effect, n,. The distributions of these statistics, under the null hypothesis, depend on q, n4, and
n, (the error degrees of freedom).

Pillai’s criterion. This test statistic, sum of A/(1+\;), can be approximated by an F variate (see
Pillai, 1960). (The degrees of freedom are a function of q, n,, and n,.) .

Hotelling’s trace. This is the statistic T = sum of \;, which is equal to the trace of S;S.”. The
critical points of the distribution of T have been tabulated by Pillai (1960) and depend on § =
min(p,q), M = (|my = q| — 1)/2,and N = (n, — q — 1)/2. (The values of S, M, and N for each
b effect are printed by MANOVA.) MANOVA also gives an approximate F statistic based on T,
; where the degrees of freedom depend on g, n, and n..
; Wilks’ lambda. This test statistic, product of 1/(1+X\;), can be transformed, using Rao’s
formula (Rao, 1973), into an approximate F statistic with degrees of freedom determined by
q, 4, and n,.

i
3
!
b
£
b
!
!
g

Roy’s largest root criterion. Upper percentage points of the distribution of this test statistic,
AJ(1+X;), where A, is the largest eigenvalue of S,S.”, can be found in Heck (1960), Pillai
(1967), and Morrison (1976). This distribution, like that of Hotelling’s trace, depends en S, M.
and N.

MANOVA 33




34 SPSS UPDATE 7-y

For the dental calculus data, the multivariate tests of the hypothesis that there is no TR effect
(adjusted for the YEAR effect) are presented in Figure 1.32c.

Figure 1.32¢

EFFECT .. TR
MULTIVARIATE TESTS OF SIGNIFICANCE (S = 3, M = 0, N = 48)

TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F
PILLAIS .20122 1.79739 12.00 300.00 .048
HOTELLINGS .22813 1.83769 12.00 290.00 .042
WILKS .80733 1.82255 12.00 259.58 .045
ROYS .14402

The name of the test statistic is given under TEST NAME and its value listed under
VALUE. For Pillai’s criterion, Hotelling’s trace, and Wilks lambda, approximate F statistics
are given, with the degrees of freedom under HYPOTH. DF and ERROR DF and the
p-values under SIG. OF F. A comparison (with references) of the powers of these four tests
can be found in Morrison (1976).

3 Ligenvalues and canonical correlations. The nonzero eigenvalues of 8,8, ! and the correspond-
ing canonical correlations for each effect in the model are given. For example, the results for
the effect TR are shown in Figure 1.32d.

Figure 1.32d

EIGENVALUES AND CANONICAL CORRELATIONS

ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR.
1 .16825 73.75366 73.75366 .37950
2 .05253 23.02709 96.78075 .22340
3 .00734 3.21925 100.00000 .08538

The canonical correlation coefficients p; are calculated as p# = M/(1 + \;); they are the
canonical correlations between the response variables and the effect. p; also measures the
correlation between the ith canonical variate of the response variables and the tested effect (in
certain linear combinations). The canonical correlations in this example can also be obtained
by using the following dummy variables to represent the YEAR and TR effects.

X; = 1if YEAR=2
0 otherwise

Y, = 1ifTR=2
0 otherwise

Y, =1ifTR=5
0 otherwise

If X, is already in the regression equation (since TR is adjusted for YEAR) and the
within-cells SSCP matrix is used as the error matrix, then the p;’s above are the canonical
correlations between RCAN, RLI and RCI, and Y,, Y;, Y;, and Y,.

4 Dimension reduction analysis. Dimension reduction analysis, based on Wilks’ lambda, is used
to assess the dimensionality of a significant relationship between the response variables and
the tested effect. The first test is based on all the eigenvalues and is equivalent to the overall
Wilks’ lambda test; the second test is performed on all the eigenvalues except the largest, and
so on. Hence the value of Wilks’ lambda for testing roots n, to n, is found by calculating the
product from i = n, to i = ne of 1/(1+\)).

MANOVA also prints the approximate F statistic for each of these Wilks’ lambda
statistics. For the effect TR, the output in Figure 1.32¢ is obtained.

Figure 1.32e

DIMENSION REDUCTION ANALYSIS

ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F
1 TO 3 .80733 1.82255 12.00 259.58 .045
2T03 .94316 .97402 6.00 240.16 .443

3 TO 3 .99271 .36286 2.00 198.00 .696




Dimension reduction analysis can be interpreted as follows: If the roots from n, to s are
not significant (in other words, if the s - n, + 1 smallest canonical correlations are not
significantly different from. zero), we may say that the data do not provide evidence of
association in more than n, — 1 dimensions (only n, — 1 discriminant functions are significant).
In the dental calculus example, only one canonical correlation is significant at the 0.05 level for
the TR effect.

§ Univariate analysis of variance results for each of the q response variables. In our example,
Figure 1.32f gives the results obtained for the effect TR.

Figure 1.32f

UNIVARIATE F-TESTS WITH (4,100) D. F.

VARIABLE HYPOTH. SS ERROR SS HYPOTH. MS ERROR MS F SIG. OF F
RCAN 6.18306 137.89515 1.54577 1.37895 1.12097 351
RLI 28.07315 261.87433 7.01829 2.61874 2.68002 .036
RCI 69.55358 423.98046 17.38839 4.23980 4.10123 .004

The sum of squares for the tested effect (HYPOTH. SS) and for the error (ERROR S§S)
of each response variable are the appropriate diagonal elements of S, and S, respectively.
Output for the YEAR effect and the YEAR BY TR interaction is given in Figure 1.32g.

Figure 1.32g

EFFECT .. YEAR BY TR

MULTIVARIATE TESTS OF SIGNIFICANCE (S = 1, M = 1/2, N = 48)

TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F

PILLAIS .02445 .81881 3.00 98.00 .487

HOTELLINGS .02507 .81881 3.00 98.00 .487

WILKS .97555 .81881 3.00 98.00 .487

ROYS .02445

EIGENVALUES AND CANONICAL CORRELATIONS

ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR.

1 .02507 100.00000 10G.00000 .15637

DIMENSION REDUCTION ANALYSIS

ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F

1TO 1l .97555 81881 3.00 98.00 .487

UNIVARIATE F-TESTS WITH (1.100) D. F.

VARIABLE HYPOTH. SS ERROR SS HYPOTH. MS ERROR MS F SIG. OF F
RCAN .09862 137.89515 .09862 1.37895 07152 .790
RLI 1.08877 261.87433 1.08877 2.61874 .41576 .521
RCI 9.73563 423 .98046 9.73563 4.23980 2.29625 .133
EFFECT .. YEAR

MULTIVARIATE TESTS OF SIGNIFICANCE (S = 1, M = 1/2, N = 48)

TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SI1G. OF F

PILLAIS .04077 1.38843 3.00 98.00 .251

HOTELLINGS .04250 1.38843 3.00 98.00 .251

WILKS .95923 1.38843 3.00 98.00 .251

ROYS .04077

EIGENVALUES AND CANONICAL CORRELATIONS

ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR.

1 .04250 100.00000 100.00000 .20192

DIMENSION REDUCTION ANALYSIS

ROOTS WILKS LANBDA F HYPOTH. DF ERROR DF SIG. OF F

1TO 1 .95923 1.38843 3.00 98.00 .251

UNIVARIATE F-TESTS WITH (1,100} D. F.

VARIABLE HYPOTH. SS ERROR SS ERROR MS F SIG. OF F

RCAN 3.54279 137 .89515 1.37895 2.56919 112
RN R ALY SO TT43 RIRCAEi ] AENTAT IR . 1o
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Remember, the (default) sequential approach is used to obtain the S, matrix for each
effect. Thus YEAR BY TR is adjusted for TR and YEAR, and TR is adjusted for YEAR.

6 Parameter estimates and related statistics for each response variable. These consist of the
standard errors of the parameter estimates, t-values and their significance levels (two-tailed),
and 95% confidence intervals for the parameters. The parameters estimated depend on the
contrasts chosen for the reparameterization. The output shown in Figure 1.32h describes the
parameters for the dental calculus example.

Figure 1.32h

EOLTIMAIED Ful NUAN

CONSTANT
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
1 .7455586081 .15426 4.83313 .000 .43951 1.05161
YEAR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
» 0HHGHATHEN dh BRE W [IRR] hht s A4 4
I .
FARAMETER CUEFF . STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
3 ~.0312728938 .26335 -.11875 .906 -.55374 .49120
4 .6443223443 .43965 1.46553 .146 -.22793 1.51658
8 :3i0s8001%0 5606 0204 3% 1706 155585
YEAR BY TR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
7 .0922619048 .34499 .26744 790 -.59218 .T7671
g g:g . . . . .
10 0.0
ESTIMATES FOR RLI
CONSTANT
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .85 CL
1 1.0793376068 .21258 5.07729 .000 .65758 1.50109
YEAR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
2 .0327380952 .34757 .09419 .925 -.65683 .72231
TR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL  UPPER .95 CL
3 .8313766789 .36291 2.29087 .024 .11138 1.55138
4 .6657020757 .60587 1.09875 .275 -.53633 1.86773
5 -.2549328449 .34304 -.74317 .459 -.93551 .42564
6 -.3120757021 .71186 -.43839 .662 -1.72439 1.10023
YEAR BY TR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL  UPPER .95 CL
7 .3065476190 .47542 .64480 .521 -.63667 1.24976
g 8:8 . . . . .
10 0.0
ESTIMATES FOR RCI
CONSTANT
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T  LOWER .95 CL  UPPER .95 CL
1 2.0558302808 .27049 7.60038 0.0 1.51918 2.59248
YEAR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL  UPPER .95 CL
2 ~.3988095238 .44225 -.90177 .369 -1.27622 .47860
TR )
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL  UPPER .95 CL
3 1.1763125763 46177 2.54741 .012 .26018 2.09245
4 1.4540903541 77091 1.88619 .062 -.07538 2.98356
5 -.3713064713 .43648 -.85068 .397 -1.23727 .49466
6 ,3429792430 .90578 .37866 .706 ~1.45405 2.14001
YEAR BY TR
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL  UPPER .95 CL
7 .9166666667 .60493 1.51534 .133 -.28349 2.11682

10 0.0




1.33 Optional MANOVA Output

Other output related to multivariate significance tests can be obtained by using the PRINT
subcommand. Such optional output includes

1

The error matrix. For every error matrix used in the model,
PRINT=ERROR(SSCP) /

can be used to obtain the error SSCP matrix, S,. Although only one error matrix, tpe within-
cells error matrix, was used in Figure 1.32a, more than one error matrix is sometimes .used
(e.g., in muitivariate nested designs). The error matrix for Figure 1.32a is given in Figure
1.33a.

Figure 1.33a

WITHIN CELLS SUM-OF-SQUARES AND CROSS-PRODUCTS

RCAN

RLI
RCI

RCAN RLI RCI
137.89515
101.90797 261.87433
81.03938 217.53449 423 .98046

2

The error variance-covariance and error correlation matrices can also be obtained, by
specifying
PRINT=ERROR(COV,COR) /

The hypothesis SSCP matrix. The matrix S, for each effect can be obtained by specifying
PRINT=SIGNIF(HYPOTH)/

This matrix is adjusted for the covariates (if any). The hypothesis SSCP matrix for the TR
effect in Figure 1.32a is given in Figure 1.33b.

Figure 1.33b

EFFECT .. TR
ADJUSTED HYPOTHESIS SUM-OF-SQUARES AND CROSS-PRODUCTS

RCAN

RLI
RCI

RCAN RLI RCI

€.18306
8.26479 28.07315
15.81805 41.86935 69.55358

3

Roy-Bargmann step-down analysis (Roy and Bargmann, 1958). For each effect, step-down
tests (which depend on the ordering of the response variables) can be performed by specifying

PRINT=SIGNIF(STEPDOWN)/

The number of tests for effects in a step-down analysis is equal to the number of response
variables in the model. For the first response variable, the test statistic is the same as the
univariate F statistic. The test statistic for the second response variable is identical to the
univariate test statistic that would result if the first response variable were treated as a
covariate. The test statistic for the third response variable is adjusted for the first two
variables, and so on. A significant test statistic for the kth response variable indicates that this
variable is important for testing the hypothesis that the effect is zero and cannot be accounted
for by a linear combination of the preceding k — 1 variables. Since testing begins with the last
variable and proceeds backwards until a significant result is obtained, the variables assumed to
be important in testing an effect should appear early in the step-down ordering. MANOVA
uses the ordering of the response variables given in the MANOVA variable list. The step-down
analysis for the TR effect in Figure 1.32a is given in Figure 1.33c.

Figure 1.33¢

ROY-BARGMAN STEPDOWN F - TESTS

VARIABLE HYPOTH. MS ERROR MS STEP-DOWN F HYPOTH. DF ERROR DF SIG. OF F
RCAN 1.54577 1.37895 1.12097 4 100 .361
RLI 4.78488 1.88446 2.53912 4 99 .045
RCI 4.57059 2.48108 1.84218 4 98 .127
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4 The average F test. If
PRINT=SIGNIF({AVERF)/

is specified, MANOVA outputs an averaged F test for each tested effect. This is particularly
useful for repeated measures designs (see Section 1.44). The sum of squares for the effect and
the sum of squares for the error in the averaged F test are obtained by summing over the
hypothesis sum of squares and the error sum of squares, respectively, for each variable. The
averaged F test for the TR effect in the dental calculus example is given in Figure 1.33d.

Figure 1.33d

AVERAGED F-TEST WITH (12,300) D. F.
HYPOTH. SS ERROR SS HYPOTH. NS ERROR MS F SIG. OF F
(AVER. ) 103.80979 823.74994 8.65082 2.74583 3.15052 .000

5 A brief table of multivariate significance tests. A summary table, similar to the univariate
ANOVA table, (with Wilks’ lambda and the corresponding approximate F statistic replacing
the univariate F) can be obtained by specifying

PRINT=SIGNIF(BRIEF)/

Note that the BRIEF specification overrides requests for the standard multivariate signifi-
cance tests, the hypothesis SSCP matrix, and step-down analysis. The BRIEF output for
Figure 1.32a is given in Figure 1.33e.

Figure 1.33e

TESTS OF SIGNIFICANCE FOR WITHIN CELLS USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION WILKS LAMBDA APPROX MULT F SI1G. OF F AVERAGED F SIG. OF F
CONSTANT .46843 37.07044 0.0 76.86413 0.0
YEAR .95923 1.38843 .251 2.83448 .038
TR .80733 1.82255 .045 3.15052 .000
YEAR BY TR .97555 .81881 .487 1.32601 .266

1.34 Principal Components Analysis

Principal components analysis (which is performed on each'error matrix used in the model) can be
requested via the PRINT subcommand. If

PRINT=PRINCOMPS(COR)/

is specified, the principal components of the error correlation matrix are printed, while
PRINT=PRINCOMPS(COV) /

produces the principal components of the error-covariance matrix.
The output for a principal components analysis includes

1 A table listing the eigenvalues of the error matrix (COR or COV) and the proportion and
cumulative proportion of the total variance accounted for by each component.

The principal components of the error matrix.

3 The determinant of the error matrix, the Bartlett test of sphericity, and F max tests. The
Bartlett test statistic, which has an approximate chi-square distribution with q(q — 1)12
degrees of freedom, is used to test the hypothesis that the population error correlation matrix
is an identity matrix (or, equivalently, that the population error variance-covariance matrix is ‘ .
a diagonal matrix). The F max statistic (the ratio of the largest to the smallest diagonal
element of the error variance-covariance matrix) is used to test the hypothesis that the
variances of the q response variables are equal. The critical points of the distribution of F max
under the null hypothesis can be found in Winer (1971) and depend on q and n,. Both the
Bartlett test and F max test can be obtained simply by requesting the error correlation matrix;
i.e., by specifying

PRINT=ERROR (COR) /

N

in a MANOVA run. It is not necessary to perform a principal components analysis in order to
obtain these statistics.




The output from a principal components analysis performed on the dental calculus data is given in
Figure 1.34.

Figure 1.34

MANOVA 39

EIGENVALUES OF WITHIN CELLS CORRELATION MATRIX

EIGENVALUE PCT OF VAR CUM PCT

2.02696 67.56528 67.56528

2 .67398 22.46611 90.03139
3 .29906 9.96861 100.00000

NORMALIZED PRINCIPAL COMPONENTS

COMPONENTS

VARIABLES 1 2 3.
RCAN -.73816 -.65197 -.17338
RLI -.90389 .08961 .41827
RCI ~.81551 .49081 -.30667
DETERMINANT = .40855

BARTLETT TEST OF SPHERICITY = 87.87194 WITH 3 D. F.
SIGNIFICANCE = .000

F(MAX) CRITERION = 3.07466 WITH (3.100) D. F.

MANOVA also enables the user to rotate the principal components loadings. The keywords
for specifying the type of rotation are VARIMAX, QUARTIMAX, and EQUIMAX (see SPSS,
Second Edition, pp. 484-485, for a description of these three rotations). NOROTATE inhibits
rotation. For example, if

PRINT=PRINCOMPS ( COR,ROTATE( VARIMAX) ) /

is specified, a principal components analysis is performed on each error correlation matrix and the
varimax method is used to rotate the component loadings. By default, all components are rotated.
Fewer components may be rotated by specifying the number of components to be rotated, in

parentheses, after the NCOMP keyword or by specifying a cutoff value for the eigenvalues, in
parentheses, after the MINEIGEN keyword. For example, specifying

PRINT=PRINCOMPS(COR, ROTATE( VARIMAX) ,NCOMP(2) )/

causes only the first two components to be rotated. If
PRINT=PRINCOMPS ( COR, ROTATE(VARIMAX ) ,MINEIGEN(1.5)) /

is specified, only those components associated with eigenvalues greater than 1.5 will be rotated.

1.35 Discriminant Analysis

MANOVA can be used to perform discriminant analysis for each effect in the model. The PRINT
subcommand requesting discriminant analysis has the format

PRINT=DISCRIM(output list)/

The output list may include requests for

1 The raw discriminant function coefficients. These are obtained for each tested effect by
specifying :
PRINT=DISCRIM(RAW)/

2 The standardized discriminant function coefficients. If
PRINT=DISCRIM(STAN)/

is specified, the standardized discriminant function coefficients (obtained by multiplying each
raw coefficient by the corresponding standard deviation of the variable) will be printed.

3 The effect estimates in the discriminant function space. To obtain the estimates of each effect
for the canonical variables, specify

PRINT=DISCRIM(ESTIM) /
The canonical variables are defined here as the canonical variates associated with the response
variables.
4 The correlations between response variables and canonical variables. These are obtained by
specifying
PRINT=DISCRIM(COR) /
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As an indication of how much each response variable contributes to the canonical variate,
these correlations aid in the interpretation of the canonical variables.

For the dental calculus data, a discriminant analysis for the effect TR is requested by specifying
PRINT=DISCRIM(RAW,STAN, ESTIM,COR)/

The resulting output is given in Figure 1.35.

Figure 1.35

RAW DISCRIMINANT FUNCTION COEFFICIENTS
FUNCTION NO.

VARIABLE

RCAN .02507
RLI -.14814
RCI -.40728

STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS

FUNCTION NO.
VARIABLE 1
RCAN .02944
RLI ~.23973
RCI ~.83862

ESTIMATES OF EFFECTS FOR CANONICAL VARIABLES
CANONICAL VARIABLE

PARAMETER . 1
3 -.60303
4 -.67469
5 .18246
6 -.08566

CORRELATIONS BETWEEN DEPENDENT AND CANONICAL VARIABLES
CANONICAL VARIABLE

VARIABLE 1
RCAN -.38019
RLI -.77143
RCI -.98526

Discriminant analysis results are reported only for those functions (or corresponding
canonical correlations; see Section 1.32) that are significant at level a. The default value of a is
0.15. In Figure 1.32a, the dimension reduction analysis for the TR effect indicates that only the
first canonical correlation is significant (the observed significance level is 0.045); hence only one
discriminant function is reported in the output displayed above. The value of o can be set by
specifying a number between 0 and 1, in parentheses, after the keyword ALPHA. Thus,

PRINT=DISCRIM(RAW, COR, ALPHA(0.5))/
produces discriminant function coefficients and the correlations between response variables and
canonical variables that correspond to discriminant functions with significance levels less than 0.5.
If o = 1.0 is specified, MANOVA reports all the discriminant functions.

The correlations between the response variables and the canonical variables can be rotated by

adding the ROTATE keyword to the PRINT subcommand. (The types of rotation available are
described in 1.34.) For example,

PRINT=DISCRIM(COR,ROTATE(VARIMAX),ALPHA(1.0)}/

produces the correlations between the response variables and all the canonical variables and
rotates the canonical variables (using the varimax method).

1.36 Box’s M Test

The assumption of homogeneous within-cells variance-covariance matrices can be assessed by
Box’s M test, a multivariate analog of Bartlett’s test. If

PRINT=HOMOGENEITY (BOXM) /

is specified, MANOVA will print Box’s M statistic and an approximate F statistic with its p- value.
The results of Box’s M test for the dental calculus data are given in Figure 1.36.
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Figure 1.36

MULTIVARIATE TEST FOR HOMOGENEITY OF DISPERSION WATRICES

BOXS M = 114.53559
F WITH (36,2404) DF = 2.67721, P =  .000 {APPROX.)
CHI-SQUARE WITH 36 DF = 98.09416. P = .000 (APPROX.)

1.37 Multivariate Analysis of Covariance

MANOVA will also perform a multivariate analysis of covariance. Figure 1.37a illustrates this use
of MANOVA.,

Figure 1.37a
RUN NAME DENTAL CALCULUS DATA FROM FINN(1974) PAGE C-56
FILE NAME DATA FOR ANTI-CALCULUS AGENT

VARIABLE LIST YEAR,TR,RCAN,RLI,RCI,LCI,LLI,LCAN
INPUT FORMAT FIXED(2F1.0.6F2.0)

N OF CASES 107

MISSING VALUES YEAR TO LCAN(BLANK)
MANOVA RCAN,RLI,RCI BY YEAR(1,2),TR(1,5) WITH LCI/
READ INPUT DATA

11221221

11000210

11004400

11222322

23013430

23101010

23010000

23016410

FINISH

RCAN, RLT, and RCI are the response variables and LCI the covariate in this example. The
discussion of univariate analysis of covariance in Section 1.17 can be generalized.
When a covariate is specified, multivariate significance testing and parameter estimation are

\adjusted for the covariate; i.e., both S, and S, are adjusted. For the dental calculus data, the

muitivariate significance tests for the TR effect, adjusted for the covariate LCI, are given in Figure
1.37b.

Figure 1.37b

EFFECT .. TR
MULTIVARIATE TESTS OF SIGNIFICANCE (S =3, M =0, N = 47 1/2)

TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F
PILLAIS .18149 1.59371 12.00 297.00 .092
HOTELLINGS .20468 1.63178 12.00 287.00 .082
WILKS .82485 1.61631 12.00 256.93 .087
ROYS .13641

EIGENVALUES AND CANONICAL CORRELATIONS

ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR.
1 .15796 77.17431 T7.17431 .36934
2 .04095 20.00838 97.18269 .19835
3 .00577 2.81731 100.00000 .07572

DIMENSION REDUCTION ANALYSIS

ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F
1T03 .82485 1.61631 12.00 256.93 .087
2T03 .95515 .75412 6.00 237.72 .607
3T03 .99427 .28215 2.00 196.00 .754

UNIVARIATE F-TESTS WITH (4,99) D. F.

VARIABLE HYPOTH. SS ERROR SS HYPOTH. MS ERROR MS F SIG. OF F
RCAN 4.20875 119.32324 1.05219 1.20629 .87298 .483
RLI 4.15057 152.39986 1.03764 1.53939 .67406 .612

RCI 18.00210 123.66477 4.50052 1.24914 3.60290 .009

MANOVA 41
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MANOVA also prints multivariate significance tests of the hypothesis that the regression
coefficients are zero, under the heading EFFECT..WITHIN CELLS REGRESSION. (WITHIN
CELLS indicates that the within-cells error matrix was used in the model.) These tests for the
dental calculus data of Figure 1.37a are shown in Figure 1.37c. (See Section 1.38 for a more

detailed discussion of regression analysis.)

Figure 1.37¢c

EFFECT .. WITHIN CELLS REGRESSION
MULTIVARIATE TESTS OF SIGNIFICANCE (S - 1. M 1/2. N 47 1/2)
TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F
PILLAIS .72613 85.72625 3.00 97.00 0.0
HOTELLINGS 2.65133 85.72625 3.00 97.00 0.0
WILKS 27387 85.72625 3.00 97.00 0.0
ROYS .T72613
EIGENVALUES AND CANONICAL CORRELATIONS
ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR. SQUARED COR.

1 2.65133 100.00000 100.00000 .85213 .72613
DIMENSION REDUCTION ANALYSIS
ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F
1 TO 1 .27387 85.72625 3.00 97.00 0.0
UNIVARIATE F-TESTS WITH (1,99) D. F.
VARIABLE SQ. MUL. R MUL. R ADJ. R-SQ. HYPOTH MS ERROR MS F
RCAN .13468 .36699 .07350 18.57190 1.20629 15.40872
RLI .41804 .64656 .37689 109.47447 1.5393¢ 71.11537
RCI .70832 .84162 .68770 300.31570 1.24914 240.41814

SIG. OF F

.000
.000
0.0

The estimated parameters for the regression of each response variable on the covariate are
also listed, together with standard errors, t-values, and confidence intervals. For Figure 1.37a, the

results in Figure 1.37d were obtained.

Figure 1.37d

REGRESSION ANALYSIS FOR WITHIN CELLS ERROR TERM

DEPENDENT VARIABLE ..RCAN

COVARIATE B BETA STD. ERR.
LCI .1731949251 .3669895761 .04412
DEPENDENT VARIABLE ..RLI

COVARIATE B BETA STD. ERR.
LCI .4204974555 .6465616861 .04986
DEPENDENT VARIABLE ..RCI

COVARIATE B BETA STD. ERR.
LCI .6964596479 .8416200881 .04492

T-VALUE
3.92539

T-VALUE
8.43299

T-VALUE
15.50542

SIG. OF T LOWER
.000

SIG. OF T LOWER
0.0

SIG. OF T LOWER
0.0

.95 CL
.08565

.95 CL
.32156

.95 CL

.60733

UPPER

UPPER

UPPER

.95 CL
.26074

.95 CL
.51944

.95 CL
. 78559

1.38 MULTIVARIATE MULTIPLE LINEAR REGRESSION

1.39 The Multivariate Linear Regression Model
The univariate regression model

+ BpXip + &

expresses the ith observation of the dependent variable Y as a linear function of p independent
variables X; and the error term €;.

Yi= B+ B:Xu + ...




The ¢; are assumed to be independent and normally distributed with mean 0 and variance o2,

and the B/'s are the unknown parameters to be estimated. The multivariate extension of this model
is

Yi=By+BXy+...+BXp+e =B +BXi+¢

where Y; = (Y Ye. .. Yy) is a vector of q response variables for observation i, the X; are
independent variables, the B; are q X 1 vectors containing the regression parameters,and the ¢;
vectors are the errors (assumed to be independent and to have a q-variate normal distribution with
mean 0 and covariance matrix ).

1.40 MANOVA Multivariate Regression Analysis

MANOVA provides estimates of By, B, and I and tests the hypothesis that B = 0. The constant
vector B, is included in the model unless the subcommand

METHOD=ESTIMATION(NOCONSTANT)/

is included in the MANOVA run. When NOCONSTANT is specified, the regression line or plane is
forced to pass through the origin (i.e., B is assumed to be 0 in the equation). Four test statistics
(described in Section 1.32) are given for testing the hypothesis that B = 0: Pillai’s criterion,
Hotelling's trace, Wilks’ lambda, and Roy’s largest root. All of these are functions of the nonzero
eigenvalues of S,S,, where S, is the regression SSCP matrix and S, is the error SSCP matrix.

In Figure 1.40a (taken from Finn, 1974), the dependent variable consists of two divergent
measures of achievement, synthesis (SYNTH) and evaluation (EVAL), and the independent
variables are a general intelligence index (INTEL) and three measures of creativity (CONOBV,
CONRMT, and JOB). Three cross products between the creativity measures and INTEL are
formed to represent the interaction terms of the model. Figure 1.40a shows the standard SPSS
command file for this problem. COMPUTE statements are used to create the interaction terms.

Figure 1.40a
RUN NAME MULTIVARIATE MULTIPLE REGRESSION
COMMENT DATA ARE TAKEN FROM FINN{1974) C-3

VARIABLE LIST SYNTH EVAL CONOBV CONRMT JOB INTEL
INPUT MEDIUM  CARD

INPUT FORMAT  FREEFIELD

MISSING VALUES SYNTH TO INTEL(9.9)

N OF CASES UNKNOWN

COMPUTE CI1=CONOBV*INTEL

COMPUTE CI2=CONRMT*INTEL

COMPUTE CI3=JOB*INTEL

MANOVA SYNTH EVAL WITH INTEL CONOBV CONRMT JOB CIl1 CI2 CI3/

PRINT=DISCRIM(RAW, STAN,ESTIM,COR)/
READ ‘INPUT DATA

5120.0 5.0 13.0 106.0
00 13.0 3.0 10.0 97.0
62 9.94.0 5.0 90.0
42 10.0 3.0 15.0 121.0
1212.02.0 4.0 99.0
7 125.0 5.0 23.0 120.0
1221.0 3.0 0 91.0

11.

32 15.0 4.0 12.0 107.0
6 6 22.0 10.0 23.0 143.0
00 12.0 2.0 13.0 101.0
41 12.0 6.0 10.0 115.0
3010.0 5.0 10.0 97.0
3121.03.020.0 92.0
END INPUT DATA

Note that no factor variables are specified in the MANOVA procedure card and the keyword
WITH is used to separate the response and independent variables.

The standard output includes muitivariate significance tests and the statistics for parameter
estimation described in Section 1.32. The following tests and statistics are of particular interest:

1 Tests of H,:B=0 and H,:B,=0. These are automatically printed, along with the multiple R? and
adjusted R? for each response variable regressed on the independent variables. This portion of
the output for Figure 1.40a is given in Figure 1.40b.
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Figure 1.40b

EFFECT .. WITHIN CELLS REGRESSION
MULTIVARIATE TESTS OF SIGNIFICANCE (S =2, N =2, N = 24 1/2)

TEST NAME VALUE APPROX. F- HYPOTH. DF ERROR DF SIG. OF F
PILLAIS .56946 2.88501 14.00 104.00 .001
HOTELLINGS 1.05995 3.78553 14.00 100.00 .000
WILKS .47077 3.33286 14.00 102.00 .000
ROYS .49886

EIGENVALUES AND CANONICAL CORRELATIONS
ROOT

NO. EIGENVALUE PCT. CUM. PCT. CANON. COR. SQUARED COR.
1 .99544 93.91374 93.91374 . 70630 .49886
2 .06451 6.08626 100.00000 .24617 .06060

DIMENSION REDUCTION ANALYSIS

ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F
1 T0 2 47077 3.33286 14.00 102.00 .000
2 T0 2 .93940 .55565 6.00 105.00 .765

UNIVARIATE F-TESTS WITH (7,52) D. F.

VARIABLE SQ. MUL. R MUL. R ADJ. R-5Q. HYPOTH MS ERROR MS F SIG. OF F
SYNTH .45390 67372 . 38039 11.59727 1.87825 6.17450 .000
EVAL .36102 .60085 .27500 9.60230 2.28783 4.19712 .001

EFFECT .. CONSTANT
MULTIVARIATE TESTS OF SIGNIFICANCE (S =1, M =0, N = 24 1/2)

TEST NAME . VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F
PILLAIS .01764 .45782 2.00 51.00 .635
HOTELLINGS .01795 .45782 2.00 51.00 .635
WILKS .98236 .45782 2.00 51.00 .635
ROYS .01764

EIGENVALUES AND CANONICAL CORRELATIONS
ROOT NO. EIGENVALUE PCT. CUM. PCT. CANON. COR.
1 .01795 100.00000 100.00000 .13281
DIMENSION REDUCTION ANALYSIS
ROOTS WILKS LAMBDA F HYPOTH. DF ERROR DF SIG. OF F
1 TO1 .98236 .45782 2.00 51.00 .635

UNIVARIATE F-TESTS WITH (1,52) D. F.

VARIABLE HYPOTH. SS ERROR SS HYPOTH. MS ERROR MS F SIG. OF F
SYNTH 1.13385 97.66914 1.13385 1.87825 .60367 .441
EVAL L12773 118.96726 .12773 2.28783 .05583 .814

2 Estimates of the regression coefficients B and B, with their standard errors, t values for testing
H,:B:=0, and 95% confidence intervals for each B;. The output in Figure 1.40c was obtained
for Figure 1.40a.

e
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Figure 1.40¢c

REGRESSION ANALYSIS FOR WITHIN CELLS ERROR TERM
DEPENDENT VARIABLE ..SYNTH

COVARIATE B BETA STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
INTEL .0555153073 4727752433 .05165 1.07475 . .87 -.04814 .16917
CONOBY .2008178054 .7838261472 -24128 .83231 .409 -.28334 .68498
CONRMT .1410916362 2648440705 .47795 .29520 .769 -.81799 1.10018
JOB -.3208770046 ~.9994055945 . 33236 -.96544 338 -.98781 . 34606
CIl ~.0015680423 , ~.6955227162 .00234. -.66986 .506 -.00627 .00313
CI2 -.0009030738 -.2073789045 .00443 -.20380 .839 -.00979 .00799
CcI3 .0030798107 1.2548388165 .00314 .98169 331 -.00322 .00938
DEPENDENT VARIABLE ..EVAL

COVARIATE B BETA STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
INTEL -.0094648415 -.0790004191 .05701 -.16602 .869 -.12386 .10493
CONOBV ~.1937798157 -.7413104806 .26629 -.72770 .470 -.72813 . 34057
CONRMT . 4295086197 .7901962055 .52750 .81424 .419 -.62900 1.48801
JOB -.2833034910 ~.8648268789 .36682 -.T7233 .443 ~1.01937 45277
CIl 0023782808 1.0339290659 .00258 . 92057 .362 -.00281 .00756
CI2 ~.0032614042 -.7340404855 .00489 -.66690 .508 -.01307 .00655
CI3 -0025330022 1.0115178798 .00346 .7T3156 .468 -.00441 .00948

ESTIMATES FOR SYNTH ADJUSTED FOR 7 COVARIATES
CONSTANT

STD. ERR. T-VALUE SI1G. OF T LOWER .95 CL UPPER .95 CL

PARAMETER COEFF.
1 -4.0520586339 5.21524 -.77696 o-441 -14.51720 6.41309

ESTIMATES FOR EVAL ADJUSTED FOR 7 COVARIATES

CONSTANT
PARAMETER COEFF. STD. ERR. T-VALUE SIG. OF T LOWER .95 CL UPPER .95 CL
1 1.3600318232 5.75585 .23629 .814 ‘ ~10.18992 12.90999

All of the output related to muitivariate significance tests that can be obtained by using the PRINT
phrase as described in Section 1.33 is also avdilable in the multivariate regression analysis.

1.41 Canonical Analysis

MANOVA can also be used to obtain the canonical correlation between the dependent and
independent variables entered into the multivariate regression model. Canonical correlation
analysis obtains the linear combinations u;=4,Y and v,=b’X (i=1,2,..min(p,q)) such that the
sample correlation between u, and v,, is maximized. The sample correlation between u, and v; is
greatest among all linear combinations uncorrelated with u, and v,, and so on. The a; and b; are the
canonical coefficients for the dependent and independent variables, respectively, and the pairs of
linear combinations u; and v; are called the canonical variates.

The format of the PRINT subcommand requesting canonical analysis is
PRINT=DISCRIM(output list)/

The output list may include requests for
1 The raw canonical coefficients. If
PRINT=DISCRIM(RAW)/

is specified, the raw canonical coefficients for the dependent variables and the independent
variables are produced. For Figure 1.40a, the output in Figure 1.41a is obtained.

Figure 1.41a

RAW CANONICAL COEFFICIENTS FOR DEPENDENT VARIABLES

FUNCTION NO.
VARIABLE 1
SYNTH . 40444
EVAL . 22637
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RAW CANONICAL COEFFICIENTS FOR COVARIATES
FUNCTION NO.

COVARIATE 1
INTEL .02876
CONOBV .05288
CONRMT .21845
JOB -.27454
CIl -.00014
CI2 -.00156
CI13 .00258

2 The standardized canonical coefficients. If
PRINT=DISCRIM(STAN)/

is specified, the standardized canonical coefficients (obtained by multiplying each raw
coefficient by the corresponding standard deviation of the variable) are printed. The
standardized canonical coefficients for Figure 1.40a are given in Figure 1.41b.

Figure 1.41b

STANDARDIZED CANONICAL COEFFICIENTS FOR DEPENDENT VARIABLES

FUNCTION NO.
VARIABLE 1
SYNTH .70415 /
EVAL .40212

STANDARDIZED CANONICAL COEFFICIENTS FOR COVARIATES

CAN. VAR.
COVARIATE o1
INTEL .42636
CONOBV .35939
CONRMT .71393
JOB -1.48875
CIl -.10475
CI2 -.62467
CI3 1.82693

3 The correlations between the variables and each canonical variate. These correlations are
obtained by specifying

PRINT=DISCRIM(COR)/

and indicate the contribution of each variable to the canonical variate. The percentage and
cumulative percentage of the total variation accounted for by each canonical variate are
printed as well. The perceMtage of variation in the dependent variable accounted for by the ith
canonical variate is calculated as (the sum of squares of correlations between dependent
variable and the ith canonical variable) X 100/ (number of response variables). The
percentage of variation in the independent variable accounted for by the ith canonical variate
is obtained similarly. Finally, MANOVA prints the redundancy of the dependent variable
given the availability of the independent variables (Cooley and Lohnes, 1971), under the
heading PCT VAR COV. This is calculated as the proportion of variance accounted for by the
ith canonical variate multiplied by the corresponding squared canonical coefficient. The
redundancy of the independent variables given the availability of the dependent variable
appears in the printed output under PCT VAR DEP and is obtained in a similar way. For
Figure 1.40a, the output in Figure 1.41c was obtained.

Figure 1.41c

CORRELATIONS BETWEEN DEPENDENT AND CANONICAL VARIABLES
FUNCTION NO.
VARIABLE 1

SYNTH .94733
EVAL .82794
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VARIANCE EXPLAINED BY CANONICAL VARIABLES OF DEPENDENT VARIABLES
CAN. VAR. PCT VAR DEP CUM PCT DEP PCT VAR COV CUM PCT COV
1 79.14597 79.14597 39.48249 39.48249

CORRELATIONS BETWEEN COVARIATES AND CANONICAL VARIABLES

CAN. VAR.
COVARIATE 1
INTEL .94646
CONOBV .30260
CONRMT .56188
JOB .57787
CIl .62672
CI2 .69288
CI3 .79114

VARIANCE EXPLAINED BY CANONICAL VARIABLES OF THE COVARIATES
CAN. VAR. PCT VAR DEP CUM PCT DEP PCT VAR COV CUM PCT COV
1 22.34706 22.34706 44.79657 44.79657

Note that although the number of canonical variates is equal to s = min(p,q), MANOVA prints
only those variates that have a significant canonical correlation. The default significance level is
0.15 and can be changed by using the ALPHA specification, as described in Section 1.35.

1.42 Residuals !

MANOVA will calculate and print predicted values and residuals for each response variable if
PRINT=POBS/

is specified in a MANOVA run (POBS stands for predicted observation). The output also includes
the case numbers, observed values, and standardized residuals (obtained by dividing the residuals
by the error standard deviation).

If multiple error terms are specified in an analysis of covariance model and the residuais for
each case are needed, the ERROR subphrase should be used to designate which error term’s
regression coefficients are to be used in calculating the predicted values. Any error term defined in
the design can be used. Consider, for example, a 3 X 2 factorial design with repeated measures on
factor B, a SUBJECT factor nested within factor A, and a covariate X. (See Section 1.44 for a
discussion of the repeated measures design.) The following MANOVA cards may be used to obtain
residuals and significance tests for the model.

MANOVA Y BY A(1,3) SUBJECT(1,3) B(1,2) WITH X/
PRINT=POBS(ERROR(2) ) /

DESIGN=A VS 1, B VS 2, A BY B VS 2,
SUBJECT W A = 1, B BY SUBJECT W A = 2/

ERROR(2) within the POBS phrase indicates that the regression coefficients associated with error
term 2 are to be used to calculate the predicted values for the model (error term 2 is defined in the
DESIGN specification as the interaction between B and SUBJECT (within A)).

Various residual plots (observed versus predicted values, observed values versus standardized
residuals, predicted values versus standardized residuals, and case number versus standardized
residuals) are also available. For a discussion of the graphic features of MANOVA see Section 1.51.

1.43 SPECIAL TOPICS

1.44 Repeated Measures Designs

1.45 Introduction '

Designs in which multiple observations are made on a single experimental unit are called repeated
measures designs. For example, if a patient’s blood pressure is recorded daily for five days after
administration of antihypertensive are medication, five repeated observations are obtained for the
same case. If only one variable is being measured, say systolic blood pressure, the design is termed
singly multivariate. If several variables, such as standing and recumbent systolic and diastolic blood
pressures are recorded, the design is doubly multivariate. Since multiple observations are made on
the same experimental unit, they are not independent. Special procedures must therefore be used
for analysis of repeated measures data.

MANOVA
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There are several possible strategies for analysis of repeated measures designs. Both
univariate and multivariate solutions can be obtained. Selection of a strategy should be based on
the appropriateness of the necessary assumptions as well as power considerations.

1.46 An Example

Data from a repeated measures design found in Winer (1971, p. 546) are shown in Table 1.46. They
consist of accuracy scores obtained by adjusting three dials (DIAL) under two levels of background
noise (NOISE) during three consecutive ten-minute periods (PERIOD). Each subject is observed
nine times, once at each combination of period and dial type. PERIOD and DIAL are called
within- subjects factors, while NOISE is called a between-subjects factor. If subject is considered a
factor. then the subject factor is crossed with PERIOD and DIAL but nested under NOISE level.

Table 1.40
Periods: 1 2 3
Noise  Subject
Dials: 1 231123123
1 45 53 60 |40 52 57 | 28 37 46
1 2 35 41 SO |30 37 47 {25 32 41
3 60 65 75 | 58 54 70 | 40 47 50
4 50 48 61 {25 34 51116 23 35
2 5 424555 W37 43|27 %7
0 S P W sty

1.47 Obtaining a Univariate Analysis the Hard Way

The univariate analysis of the repeated measures design displayed in Table 1.46 is obtained by

treating subject as a random effect nested under the NOISE factor. The model is called a mixed-

effects model, and the resulting analysis is a mixed-mode! analysis of the repeated measures design.
The technique described in Section 1.25 can be used to determine the appropriate error terms

for testing the various effects. Table 1.47 summarizes the effects and corresponding error terms for

this example.

Table 1.47

Eflect Error Term

NOISE Subject within NOISE

PERIOD PERIOD X Subject within NOISE

NOISE x PERIOD

DIAL DIAL x Subject within NOISE

NOISE x DIAL

PERIOD x DIAL PERIOD x DIAL x SUBJECT within NOISE
NOISE x PERIOD x DIAL

Figure 1.47a shows an SPSS command file that can be used to perform a univariate analysis of
the repeated measures design for the data in Table 1.46. The resulting ANOVA table is presented
in Figure 1.47b. A somewhat complicated DESIGN specification is needed because of the multiple
error terms in the model. In the next section, a much easier approach to the same problem is given.
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Figure 1.47a
RUN NAME UNIVARIATE ANALYSIS OF REPEATED MEASURES DESIGN.
COMMENT DATA ARE TAKEN FROM WINER(1971) PAGE 546.

VARIABLE LIST NOISE SUBJECT PERIOD DIAL Y
INPUT FORMAT FIXED(4Fl1.0,1X,F2.0)

N OF CASES 54
INPUT MEDIUM  CARD
MANOVA Y BY NOISE(1.2) SUBJECT(1.3) PERIOD DIAL(1,3)/

DESIGN=NOISE VS 1, SUBJECT W NOISE=1, PERIOD VS 2,
DIAL VS 3, PERIOD BY SUBJECT W NOISE=2,
DIAL BY SUBJECT W NOISE=3, NOISE BY PERIOD VS 2,
NOISE BY DIAL VS 3, PERIOD BY DIAL VS 4,
PERIOD BY DIAL BY SUBJECT W NOISE=4,

: NOISE BY PERIOD BY DIAL VS 4/

READ INPUT DATA

1111 45

1112 53

1113 60

1121 40

1122 52

2322 39
2323 57
2331 31
2332 29
2333 46
FINISH

Figure 1.47b

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUNS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 0.0 0

CONSTANT 105868.16667 1 105868.16667

ERROR 1 2491.11111 4 622.77778

NOISE 468.16667 1 468.16667 .T5174
ERROR 2 234.88889 8 29.36111

PERIOD 3722.33333 2 1861.16667 63.38884
NOISE BY PERIOD . 333.00000 2 166.50000 $5.67077
ERROR 3 105.55556 8 13.19444

DIAL 2370.33333 2 1185.16667 89.82316
NOISE BY DIAL 50.33333 2 25.16667 1.80737
ERROR 4 127.11111 16 7.94444

PERIOD BY DIAL 10.66667 4 2.66667 . 33566
NOISE BY PERIOD BY DIAL 11.33333 4 2.83333 . 35664

.435

.000
.029

.210

.850
.836

The mixed-model analysis requires that the variances of the dependent variable be equal for
all factor combinations, and that the correlations of the dependent variable at different
combinations of within-subjects factors be equal. The MANOVA procedure provides a test,
discussed in the next section, for this assumption of compound symmetry.

If compound symmetry appears to be violated, the multivariate approach can be used. In
general, the univariate approach is somewhat more powerful, especially for small sample sizes.
Note that in the MANOVA procedure, the univariate results can be obtained from the multivariate
analysis output. This is important since the multivariate specifications are much simpler than the
univariate mixed- model approach just outlined.

1.48 Trend Analysis

Since both PERIOD and DIAL are statistically significant, one may wish to investigate the growth
trends for PERIOD and DIAL. If a trend analysis for PERIOD is desired, this effect can be
partitioned into a linear effect, PERIOD(1), and a quadratic effect, PERIOD(2), by using the
following specifications.

CONTRAST ( PERIOD ) =POLYNOMIAL/
PARTITION(PERIOD)/

Equaily spaced PERIOD levels are assumed here; for the use of CONTRAST and PARTITION
subcommands when levels are unequally spaced, see Sections 1.88 and 1.89.

As shown in Table 1.47, the test for a PERIOD effect used the PERIOD X (subject within
NOISE) error term. For the orthogonal polynomial components of PERIOD, we can either use
this error term to test for PERIOD(1) and PERIOD(2) effects or decompose PERIOD X (subject

MANOVA
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within NOISE) into PERIQD(1) x (subject within NOISE) and PERIOD(2) X (subject within
NOISE) and use these as the error terms for PERIOD(1) and PERIOD(2), respectively. The
choice of procedure depends in part on the assumptions of the mode! (see Bock, 1975, p. 460).
Unless PERIOD(1) X% (subject within NOISE) and PERIOD(2) x (subject within NOISE) both
have a fairly large number of degrees of freedom, the single error term PERIOD X (subject within
NOISE) is generally used because this test is more powerful.

All interaction terms containing PERIOD can also be partitioned; for example, NOISE x
PERIOD has two components, NOISE x PERIOD(1) and NOISE x PERIOD(2), and the pooled
and separated error terms described above may be used to test for these two effects. The
MANOVA specifications for trend analyses of PERIOD and DIAL are presented in Figure 1.48a,
and the resulting ANOVA table is displayed in Figure 1.48b.

Figure 1.48a

MANOVA Y BY NOISE(1l,2) SUBJECT(1,3) PERIOD DIAL(1,3)/
CONTRAST ( PERIOD ) =POLYNOMIAL/
CONTRAST (DIAL )=POLYNOMIAL/

PARTITION(PERIOD)/

PARTITION(DIAL)/

DESIGN=NOISE VS 1, SUBJECT W NOISE=1, PERIOD(1) VS 2,
PERIOD(2) VS 2, DIAL(1l) VS 3,
DIAL(2) VS 3, PERIOD BY SUBJECT W NOISE=2,
DIAL BY SUBJECT W NOISE=3, NOISE BY PERIOD VS 2,
NOISE BY DIAL VS 3, PERIOD BY DIAL VS 4,
PERIOD BY DIAL BY SUBJECT W NOISE=4,
NOISE BY PERIOD BY DIAL VS 4/

Figure 1.48b

TESTS OF SIGNIFICANCE FOR Y USING SEQUENTIAL SUMS OF SQUARES

. 435

.837
.029

-0l9
.210

.850
.836

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE F SIG. OF F
RESIDUAL 0.0 ¢} .

CONSTANT 105868.16667 1 105868.16667

ERROR 1 2491.11111 4 622.77T778

NOISE 468.16667 1 468.16667 .T5174
ERROR 2 234.88889 8 29.36111

PERIOD(1) 3721.00000 1 3721.00000 126.73226
PERIOD{2) 1.33333 1 1.33333 .04541
NOISE BY PERIOD 333.00000 2 166.50000 5.67077
ERROR 3 105.55556 8 13.19444

DIAL(1) 2256.25000 1 2256.25000 171.00000
DIAL(2) 114.08333 1 114.08333 8.64632
NOISE BY DIAL 50.33333 2 25.16667 1.90737
ERROR 4 127.11111 16 7.94444

PERIOD BY DIAL 10.66667 4 2.66667 : .33566
NOISE BY PERIOD BY DIAL 11.33333 4 2.83333 . 35664

1.49 The Multivariate Approach

In the multivariate analysis of repeated measures designs, the responses of a case are treated as an
h-dimensional response vector. In the current example each subject responds to nine variables,
each variable representing a unique DIAL and PERIOD combination. Thus the design for Table
1.46 can be treated as a multivariate one-way design with NOISE as the grouping variable. The
model can be written as

Yb = ptoate;

where Y; = (Yi ... Y)', ai is the treatment effect and the e; are the errors (assumed to be
independent with an h-variate normal distribution having mean 0 and a covariance matrix %). As
long as X is positive definite, the covariance structure of the Yy can have any pattern. This
assumption is of course much less restrictive than the mixed-model assumption of compound
symmetry.

Y Theyfollowing SPSS MANOVA commands can be used to perform a multivariate analysis of
the repeated measures data in Table 1.46.

MANOVA Yl TO Y9 BY NOISE(l,2)/
WSFACTORS = PERIOD(3), DIAL(3)/
WSDESIGN = PERIOD DIAL PERIOD BY DIAL/
PRINT = SIGNIF(BRIEF)/
ANALYSIS(REPEATED) /
DESIGN = NOISE




Variables Y1 to Y9 are the nine response variables. The WSFACTORS subcommand indicates that
there are two within-subjects factors, each having three levels. The order in which the variables are
specified in the WSFACTORS list is very important since it indicates the levels of PERIOD and
DIAL corresponding to Y1 to Y9. The following table gives the correspondence between the
variables:

Variable PERIOD DIAL
Y, 1 1
Y, 1 2
Y, 1 3
Y; 2 1
Y; 2 2
Y, 2 3
Y, 3 1
Y, 3 2
Y, 3 3

If the order of the two within-subjects factors is reversed in the WSFACTORS subcommand, the
PERIOD and DIAL headings must be interchanged in the above table. For example, Y; would
correspond to DIAL level 3 and PERIOD 1.

The WSDESIGN subcommand specifies the model for the within-subjects factors. The model
fit need not be saturated. To specify an additive model, use

WSDESIGN = PERIOD DIAL/

The subcommand ANALYSIS(REPEATED) indicates that a repeated measures analysis is
desired. The model for the between-subjects factors is specified, as always, by the DESIGN
subcommand. Since there is only one between-subjects factor in this experiment, the command is
DESIGN = NOISE.

The subcommand PRINT = SIGNIF(BRIEF) requests printing of brief muitivariate output.
Excerpts from this output are shown in Figure 1.49.

Figure 1.49

TESTS OF SIGNIFICANCE FOR Y1 USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION SUM OF SQUARES DF  MEAN SQUARE ’ F SIG. OF F
WITHIN CELLS 2491.11111 4 622.77778

CONSTANT 105868. 16667 1 105868.16667 169.99349 .000
NOISE 468.16667 1 468.16667 .75174 .435

TESTS OF SIGNIFICANCE FOR WITHIN CELLS USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION WILKS LAMBDA APPROX MULT F SIG. OF F AVERAGED F SIG. OF F
PERIOD -05060 28.14526 .011 63.38884 .000
NOISE AND PERIOD .15607 8.11102 .062 5.67077 .029

TESTS OF SIGNIFICANCE FOR WITHIN CELLS USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION WILKS LAMBDA APPROX MULT F SIG. OF F AVERAGED F SIG. OF F
DIAL .01614 91.45623 .002 89.82316 0.0
NOISE AND DIAL .56498 1.15495 .425 1.90737 .210

TESTS OF SIGNIFICANCE FOR WITHIN CELLS USING SEQUENTIAL SUMS OF SQUARES

SOURCE OF VARIATION WILKS LAMBDA APPROX MULT F SI1G. OF F AVERAGED F SIG. OF F
PERIOD BY DIAL .00075 331.44500 .041 . 33566 .850
NOISE AND PERIOCD BY DIAL .00043 581.87500 .031 .35664 .836

Wilks’ lambda (with the corresponding approximate F) can be used to test for within- subjects
factor effects, if the compound symmetry assumption appears to be violated. The averaged F
statistics in the output are identical to the univariate mixed-model results displayed in Figure 1.47b.

Testing the hypothesis of compound symmetry is equivalent to testing the hypothesis that the
covariance matrix of the transformed variables is a diagonal matrix (Bock, 1975, p. 459). Thus, the
Bartlett test for sphericity can be used. MANOVA performs this Bartlett test for the transformed
variables if the TRANSFORM or WSDESIGN subcommand is present.

MANOVA also perform~ the analysis of covariance on repeated measures data. If the
covariates are constant over the repeated measures, only between-subiect factors are adjusted; and
if the covariates vary across the repeated measures, both between- and within-subjects factors are
adjusted.
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