1 / INTRODUCTION TO
BASIC CONCEPTS IN
EXPERIMENTAL DESIGN

1.1 INTRODUCTION

The term experimental design refers to five interrelated activities
required in the investigation of scientific or research hypotheses. These
activities, listed in the order performed, are as follows:

1. Formulate statistical hypotheses and make plans for the collection and -
analysis of data to test the hypotheses. A statistical hypothesis is a state-
ment about one or more parameters of a population. Statistical hypoth-
eses are rarely identical to research or scientific hypotheses but -are
testable formulations of research hypotheses. o

_ State decision rules to be followed in testing the statistical hypothese§.
. Collect data according to plan.

. Analyze data according to plan.
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_ Make decisions concerning the statistical hypotheses based on decision
rules and inductive inferences concerning the probable truth or falsity
of the research hypotheses. '

The term experimental design is also used in a more restricted sense to
designate a particular type of plan for assigning subjects to experimental
conditions and the statistical analysis associated with the plan. The mean-
ing of the term is generally clear from the context in which it is used.

SUBJECT MATTER AND GENERAL
ORGANIZATION OF THIS BOOK

The concepts and procedures involved in carrying out steps 1, 2,
4, and 5 above comprise the subject matter of this book. Experimental design
is only one of the many facets of scientific research. A carefully conceived
and executed design is of no avail if the scientific hypothesis that originally
led to the experiment is without merit.

A detailed examination of the logical and statistical aspects of
specific experimental designs begins in Chapter 4. The first three chapters
provide an overview of experimental designs. a review of basic statistical
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concepts, and a presentation of statistical tools used throughout the re-
mainder of the book. The reader is encouraged to review the introductory
chapters after reading subsequent chapters.

" This book emphasizes those experimental designs that are most
useful in the behavioral sciences. Many of the chapters conclude with a
selected bibliography of contemporary research, which indicates diverse
applications of the designs discussed in the chapter. The reader should
consult the bibliographies to gain an over-all view of the way experimental
designs are used in research.

The validity of inductive inferences that an experimenter draws from
research rests on the fulfillment of certain assumptions. These assumptions
are explicitly stated for each design as it is presented. Procedures for
determining whether or not the assumptions are tenable in the light of
sample data are also described.

A list of advantages and disadvantages for each design is provided
to aid an experimenter in the selection of an appropriate design. Subsequent
sections of this chapter treat general concepts basic to the selection of the

best design for a particular research application.

DEFINITION OF BASIC TERMS

A number of terms must be defined before concepts basic to the
selection of an experimental design can be discussed. It is assumed that
the reader already has some familiarity with most of the terms that follow.
Therefore, the material in this section is intended only to ensure a common
vocabulary for the subsequent discussion. The definitions of some terms
are oversimplified, but the assumed mathematical background does not
permit rigorous definitidns for all terms. Additional definitions are listed
in the glossary.

Population. A collection of all observations identifiable by a set of rules.
Sample. A subset of observations from a population.

Random Sample. A sample drawn from a population in such a way that all
possible samples of size n have the same probability of being selected.

Parameter. A measure computed from all observations in a population.
Parameters are designated by Greek letters. For example, the symbols for a popula-
tion mean and standard deviation are and o, respectively.

Statistic. A measure computed from observations in a sample. Statistics are
designated by Latin letters. For example, the symbols for a sample mean and
standard deviation are X and §, respectively.

Random Variable. A quantity, say X, which may assume a range of possible
values, each having an associated probability, say p(X).

Estimator. The particular function of observations in a sample that is chosen
to estimate a population parameter. For example, the sample mean is used to
estimate the population mean. The numerical value obtained is called an estimate.
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Expected Value. The long-run average of a random variable over an indefinite
number of samplings. The expected value [E(X )] of a discrete random variable X
is given by E(X) = LXp(X) = mean of X. It should be noted from the above
definition that an expected value may be a value that the random variable could not
actually hgve.

Unbiased Estimator. An estimate of a parameter is said to be unbiased if its
expected value is equal to the parameter.

Research Hypothesis. A tentative theory or supposition provisionally adopted
to account for certain facts and to guide in the investigation of others. The terms
research hypothesis and scientific hypothesis may be used interchangeably.

Statistical Hypothesis. A statement about one or more parameters of a
population. Null and alternative hypotheses are two forms of a statistical hypothesis.

Null Hypothesis (Hp). A statement concerning one or more parameters that
is subjected to statistical test.

Alternative Hypothesis (Hy). The hypothesis that remains tenable when the
null hypothesis is rejected.

Statistical Test. A procedure whereby two mutually exclusive statistical
hypotheses are evaluated in the light of sample data. The hypothesis that dictates
the sampling distribution against which an obtained sample value is compared is
said to be the one tested.

Level of Significance (). Probability of rejecting the null hypothesis when it is
true.

Type I Error. Error that occurs when the experimenter rejects the null hypoth-
esis when it is true. The probability of committing a type 1 error is determined
by the level of significance (a) that the experimenter adopts.

Type II Error. Error that occurs when the experimenter fails to reject the
null hypothesis when it is false. The probability (8) of committing a type 11 error
is determined by the magnitude of the experimental effect, size of sample, magnitude
of random error, and level of significance.

Power of Test. Probability of rejecting the null hypothesis when the alternative
hypothesis is true. If is designated as the probability of committing a type Il error,
power is equal to 1 — B.

Confidence Interval. A range of values that, considering all possible samples.
has some designated probability of including the true population value.

Confidence Limits. Upper and lower boundaries of confidence interval.

Critical Region. A set of outcomes of a statistical test that leads to the rejection
of the null hypothesis.

Replication. The collection of two or more observations under a set of
identical experimental conditions.

Degrees of Freedom (df). The number of independent observations for a source
of variation minus the number of independent parameters estimated in computing
the variation.

Experimental Error. Measure that includes all uncontrolled sources of
variation affecting a particular score.
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Sampling Distribution. A theoretical probability distribution that describes the
functional relation between possible values of a statistic based on N cases drawn
at random and the probability associated with each value over all possible samples
of size N.

4

Statistical Model. A mathematical statement concerning the sampling dis-
tribution of a random variable that is used in evaluating the outcome of an experi-
ment or in predicting the outcome of future replications of an experiment.

Test Statistic. A statistic whose purpose is to provide a test of some statistical
hypothesis. Test statistics such as ¢ and F have known sampling distributions that
can be employed in determining the probability of an obtained result under the
null hypothesis.

Relative Efficiency of a Statistic. Ratio of experimental error of one statistic
to that of another statistic.

Statistical Decision Theory. Branch of mathematics concerned with the
problem of decision making and the choice of decision rules under uncertain
conditions.

FORMULATION OF PLANS FOR
COLLECTION AND ANALYSIS OF DATA

ACCEPTABLE RESEARCH HYPOTHESES

Some questions cannot currently be subjected to experimental
investigation. For example, the questions “Can three or more angels sit
on the head of a pin?” and “Does life exist in more than one galaxy in the
universe” cannot be answered because no procedures presently exist for
observing either angels or other galaxies. Scientists confine their research
hypotheses to questions for which procedures can be devised that offer
the possibility of arriving at an answer. This does not mean that the question
concerning the existence of life on other galaxies can never be investigated.
Indeed, with continuing advances in space science it is probable that this
question will eventually be answered.

Questions that provide the impetus for experimental research should
be statable in the logical form of the general implication. That is, a question
should be reducible to the form, if A, then B. For example, if albino rats
are subjected to microwave radiation, then their food consumption will
decrease. This research hypothesis can be investigated because procedures
both for manipulating radiation level and for measuring food consumption
of rats are available.

DISTINCTION BETWEEN DEPENDENT AND
INDEPENDENT VARIABLES

In the example just cited, the presence or absence of radiation is
designated as the independent variable—the variable that is under the
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he control of the experimenter. The terms independent variable and treatment
Nt will be used interchangeably. The dependent variable is the amount of food
ies consumed by the rats. The dependent variable reflects any effects associated
with manipulation of the independent variable.
Jis- -
g SELECTION OF DEPENDENT VARIABLE
cal The choice of an appropriate dependent variable may be based on
hat theoretical considerations, although in many investigations the choice is
the determined by practical considerations. In this example, other dependent
stic variables that could also be measured include

1. Activity level of rat in an activity cage.
the 2. Body temperature of rat.
fain 3. Emotionality of rat as evidenced by amount of defecation and urination.

4. Problem-solving ability.

5. Weight of rat in grams.

6. Speed of running in a straight-alley maze.

7. Visual discrimination capacity.

8. Frequency of mating behavior.

Several independent variables can be employed in an experiment,
ntal but the designs described in this book are limited to the assessment of
 sit one dependent variable at a time. If it is necessary to evaluate two Of

more dependent variables simultaneously, 2 multivariate analysis of

the
- variance design can be used.* Some of these multivariate procedures are

for
so complicated or so tedious that they cannot reasonably be carried out

prch
bffer without a digital computer. However, the increasing availability of com-
tion puter facilities makes the use of multivariate procedures more widespread.
ated. Univariate procedures can be appropriately applied to most research
this problems because it is generally impossible to measure more than a limited
number of dependent variables, and those that can be measured are often
ould found to be highly correlated.
ktion The selection of the most fruitful variables to measure should be
rats determined by a consideration of the sensitivity, reliability, distribution,
will and practicality of the possible dependent variables. From previous
Hures experience, an experimenter may know that one dependent variable is
ption more sensitive than another to the effects of a treatment Of that one depen-
dent variable is more reliable, that is, gives more consistent results, than
another variable. Because behavioral research generally involves a sizable
investment in time and material resources, the dependent variable should be
reliable and maximally sensitive to the phenomenon under investigation.
Choosing a dependent variable that possesses these two characteristics
L. *A discussion of these designs is beyond the scope of this book. The reader is referred to
jon 18 Anderson (1958), Cooley and Lohnes (1962), Fryer (1966). Morrison'(l%'l), and Rao (1952) '
br the for a discussion of multivariate procedures. '
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may minimize the amount of research effort required to investigate a
research hypothesis.

Another important consideration in selecting a dependent variable
is whether the observations within each treatment level (or combination of
treatment levels in the case of mulititreatment experiments) would be
normally distributed. The assumption of normality, discussed in Chapter 2,
is required for the experimental designs described in Chapters 4 through 12.
In some cases it may be possible to transform nonnormally distributed
observations so that the resultant distributions are normal. This procedure
is described in Chapter 2. If theoretical considerations do not dictate the
selection of a dependent variable and if several alternative variables are
equally sensitive and reliable, in addition to being normally distributed, an
experimenter should select the variable that is most easily measured.

SELECTION OF INDEPENDENT VARIABLE

The independent variable was defined earlier as the presence or
absence of radiation. Such a treatment is described as having two treatment
levels. If the experimenter is interested in the effects of different radiation
dosages, he can employ three or more levels of radiation. The levels could
consist of 0 microwatts, 20,000 microwatts, 40,000 microwatts, and 60,000
microwatts of radiation. This particular treatment is an example of a
quantitative independent variable in which different treatment levels
constitute different amounts of the independent variable.

In general, when the independent variable is quantitative in character
there is little interest in the exact values of the treatment levels used in the
experiment. In the radiation example, the research hypothesis could also
be investigated, using three other levels of radiation, say, 25,000, 50,000
and 75,000 microwatts in addition to the zero-microwatt control level. The
treatment levels should be chosen so as to cover a sufficiently wide range to
detect effects of the independent variable if real effects exist. In addition,
the number and spacing of the levels should be sufficient to define the shape
of the function relating. the independent and dependent variables. This is
necessary if an experimenter is interested in performing a trend analysis as
described in Chapter 4.

Selection of appropriate levels of the independent variable may be
based on results of previous experiments or on theoretical considerations.
In some research areas, it may be helpful to carry out a small pilot experi-
ment to select treatment levels prior to the main experiment.

Under the conditions described in Chapters 2 and 4, the levels of
a quantitative independent variable may be selected randomly from a
population of treatment levels. If this procedure is followed, an experi-
menter can extrapolate from the results of his experiment to treatment
levels that are not included in the experiment. If the treatment levels are
not randomly sampled, the results of an experiment are applicable only
to the specific levels included in the experiment.
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Preceding paragraphs described a quantitative independent variable.
If the treatment levels consisted of unmodulated radiation, amplitude-
modulated radiation, and pulse-modulated radiation, the treatment is
designated as a qualitative independent variable. The different treatment
levels represent different kinds rather than different amounts of the indepen-
dent variable. The distinction between quantitative and qualitative treat-
ments is important in connection with trend analysis. The specific levels
of a qualitative independent variable employed in an experiment are
generally of direct interest to an experimenter. The levels chosen are usually

dictated by the nature of the research hypothesis.

CONTROL OF NUISANCE VARIABLES

In addition to independent and dependent variables, all experiments
include one or more nuisance variables. Nuisance variables are undesired
sources of variation in an experiment that may affect the dependent
variable. As the name implies, the effects of nuisance variables are of no
interest per se. In the radiation example, potential nuisance variables
include sex of the rats, variation in weight of the rats prior to the experi-
ment, presence of infectious diseases in one or more cages where the rats
are housed, temperature variation among the cages. and differences in pre-
vious feeding experiences of the rats. Unless controlled, nuisance variables
can bias the outcome of an experiment. For example, if rats in the radiated
groups suffer from some undetected disease, differences among the groups
would reflect the effects of the disease in addition to radiation effects—
if the latter effects exist.

Four approaches can be followed in controlling nuisance variables.
One approach is to hold the nuisance variable constant for all subjects.
For example, use only male rats of the same weight. Although an experi-
menter may attempt to hold all nuisance variables constant, the probability
is high that some variable will escape his attention. A second approach,
one that is used in conjunction with the first. is to assign subjects randomly
to the experimental conditions. Then known as well as unsuspected sources
of variation or bias are distributed over the entire experiment and thus
do not affect just one or a limited number of treatment levels. In this case
an experimenter increases the magnitude of random variation among
observations in order to minimize systematic effects, that is, the effects
of nuisance variables that bias all observations in one or more treatment
levels in the same manner. Random variation can be taken into account
in evaluating the outcome of an experiment, whereas it is difficult or
impossible to account for systematic nuisance effects. A third approach to
controlling nuisance variables is to include the variable as one of the treat-
ments in the experimental design. This approach is illustrated in Section
1.4 in connection with a Latin square design.

The above three approaches for controlling nuisance variables
illustrate the application of experimental control as opposed to the fourth
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approach which is statistical control. In some experiments it may be possible
—through the use of regression procedures (see Chapter 12)—to remove the
effects of a nuisance variable statistically. This use of statistical control is
referred to as the analysis of covariance.

4

CLASSIFICATION OF INDEPENDENT
AND NUISANCE VARIABLES

All independent and nuisance variables in behavioral research
can be classified in one of three general categories—organismic, environ-
mental, and task variables. In the radiation example, the independent
variable of radiation can be classified as an environmental variable. The
nuisance variables listed earlier as sex, weight, prior experience, and infec-
tious diseases are examples of organismic variables. The other nuisance
variable of temperature variation among the cages is an example of an
environmental variable. This radiation experiment does not include a
task variable. A task variable could be introduced into the experiment
by requiring the rats to perform easy, medium, and difficult visual dis-
criminations before gaining access to food. The effect of the visual dis-
crimination on food consumption represents an additional independent
variable that can be classified as a task variable. In the design of experi-
ments, the above classifications may help an experimenter in listing the
nuisance variables that should be controlled.

EFFICIENCY AND EXPERIMENTAL DESIGN

An experimenter engaging in research is desirous of arriving at
valid conclusions. At the same time he hopes to accomplish this goal as
efficiently as possible. Generally several experimental designs can be
used in testing a statistical hypothesis. However, alternative designs that are
equally valid for testing a hypothesis are rarely equally efficient. Efficiency
of alternative research procedures may be defined in different ways. For
example, efficiency may be defined in terms of time required to collect data,
cost of data collection, ratio of information obtained to cost, and so on.
A discussion of relative efficiency by Cochran and Cox (1957, 31) is in-
structive. A commonly used index for assessing the relative efficiency
of two experimental designs is given by the ratio of their respective experi-
mental errors. Experimental error refers to all extraneous. variation in
dependent variable scores that tends to mask the effects of the independent
variable. The main sources of experimental error are inherent variability
in the behavior of subjects and lack of uniformity in the conduct of the
experiment.

A formula that provides insight into factors related to the efficiency
of two designs is
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Py
. _\ 6i df, +3
Efficiency = YAV TN
6% J\df, +3

where 62 = estimate of experimental error per observation, n = number of
subjects, C = cost of collecting data per subject, df = experimental error
degrees of freedom, and the subscripts designate the two experimental
designs (Federer, 1955, 13). If the ratio is less than one, the second design
is more efficient than the first. The converse is true if the ratio is greater
than one. The formula calls attention to four factors that are related to
the efficiency of experimental designs. Unfortunately, an experimental
design that is advantageous with respect to one factor may not be advan-
tageous with respect to the others. For example, if a design has the desirable
attribute of a small experimental error, it may have a high cost per subject
or a small number of degrees of freedom for experimental error, or it may
require a large number of subjects. The problem facing an investigator is
to select an experimental design that represents the best compromise
obtainable within the constraints of his research situation.

”

DETERMINATION OF SAMPLE SIZE

Once the independent and dependent variables are specified, the
number of subjects required for the experiment must be determined.
This is one of the more perplexing problems in experimental design. Five
factors must be considered in specifying a sample size that is adequate for
testing a statistical hypothesis: (1) minimum treatment effects an experi-
menter is interested in detecting, (2) number of treatment levels, (3) popula-
tion error variance, (4) probability of making a type I error, and (5) prob-
ability of making a type II error. In general, the population error variance
is unknown. It may be possible to make a reasonable estimate of the popula-
tion error variance on the basis of previous experiments or a pilot study.
If the above information can be specified, the size of the sample necessary
to achieve a given power can be calculated. The power of a research
methodology is defined as the probability of rejecting the null hypothesis
when the alternative hypothesis is true. Power is equal to 1 — (probability
of committing a type II error).

The procedure described here for calculating power was developed
by Tang (1938). It assumes that the observations are normally distributed
with a common error variance = 7. The parameter ¢ is defined as

k
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where p; — p = the minimum treatment effect an experimenter is inter-
ested in detecting, k = number of treatment levels, g, = square root of
population error variance, and n = size of sample. If estimates of u; — ft
and ¢, can be made, the size of a sample necessary to achieve a designated
powe'r' can be determined from Table D.14 by a process of trial-and-error.
The probability of type I and type II errors, 2 and B respectively, that the
experimenter is willing to accept must also be specified.

Assume that a treatment has three levels and that the smallest
treatment effects of interest to the experimenter are —4, —1, and +35.
That is,

K

Dl = W7 = (=47 + (—1)? + (5 = 42.
Assume, also, that on the basis of previous research g, is estimated to be
six and that the investigator wishes the power of his test (1 — B) to equal
at least .80 and the probability of a type I error to equal .05. If nine subjects
are assigned to each of the three treatment levels, Table D.14 in the appendix
can be used to determine if the specified power is achieved. For example,

\FW + (=% + (5
b= 3 _VA2B _ a1

6// 9 6/3
with k = 1 = 2 and N — k = 24 degrees of freedom. The value of ¢ =
{87 and x = .05 are entered in the table for k — 1 degrees of freedom.
The curve corresponding to N — k degrees of freedom indicates that the
power is equal to .79, which is less than that desired by the experimenter.
If the sample size is increased to 30, with ten subjects assigned to each
treatment level, the power can be estimated from

\/(’—4)2 + (=1 + 5
3

= 197,

6/\/10

with k — 1 = 2 and N — k = 27 degrees of freedom. The probability of
detecting the specified treatment effects is approximately .83. Thus the
required sample size is found to be 30.

If reasonable estimates of the parameters can be made, the required
sample size should always be computed before the experiment is begun.
If these preliminary calculations indicate that the power of the experi-
mental design is inadequate, the experimenter may choose not to conduct
the experiment or may modify it so as to increase its power. The two
most common procedures for increasing power are (1) to increase the
size of the sample and (2) to employ an experimental design that provides
a more precise estimate of treatment effects and a smaller error term. The
first procedure was illustrated in this section. The second is described in

¢=
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Section 1.4. Overall and Dalal (1965) have described a procedure for
maximizing the power of a research methodology relative to cost through
the optimum’ allocation of resources to subjects; it requires a priori esti-
mates of a number of design parameters. A procedure is described in
Section 4.5 for estimating the number of subjects required for an experi-
ment, one that does not necessitate making an estimate of the population
error variance.

OVERVIEW OF TYPES OF
EXPERIMENTAL DESIGNS

One of the procedures suggested above for increasing the power
of a research methodology was to employ a more sensitive experimental
design. In this context, the term experimental design refers to the plan by
which subjects are assigned to treatment levels and the data analyzed.

An almost bewildering array of kinds of experimental designs exists.
Fortunately, most complex experimental designs represent a combination
of a relatively small number of basic building block designs. For example.
most complex designs can be constructed by combining- two or more
completely randomized, randomized block, or Latin square designs. A
simple classification of the experimental designs described in this book is
outlined in Table 1.4-1. A more complete classification system appears in
Cox (1943); Doxtator, Tolman, Cormany, Bush, and Jensen (1942); and

Federer (1955, 6-12).
The category systematic designs in the outline is of historical interest

only. According to Leonard and Clark (1939), agricultural field research
employing systematic designs on a practical scale dates back to 1834.
Prior to the work of Fisher, as well as of Neyman and Pearson on the
theory of statistical inference, investigators used systematic schemes
rather than randomization procedures for assigning treatment levels to
plots of land or other suitable experimental units—hence the designation
systematic designs for these early field experiments. Impetus for this
early experimental research came from a need to improve agricultural
techniques. Today the nomenclature of experimental design is replete
with terms from agriculture. Systematic designs in which the randomization
principle is not followed do not provide a valid estimate of error variance
and hence are not subject to powerful tools of statistical analysis, such as
analysis of variance.

Modern principles of experimental design, particularly the principle
of random assignment of treatment levels to experimental units, received
general acceptance as a result of Fisher's work (1922, 1923, 1935). Experi-
mental designs using the randomization principle are called randomized
designs. Randomized designs can be subdivided into two distinct categories,
complete block designs and incomplete block designs, and two pseudo-
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TABLE 1.4-1 Outline of Experimentai Designs Described
in this-Book

» Experimental Design

Abbreviated
Designation

1. Systematic Designs
1. Randomized Designs
A. Complete Block Designs
1. Completely randomized design
2. Randomized block design
3. Latin square design
4. Graeco-Latin square design
5. Hyper-Graeco-Latin square design
B. Incomplete Block Designs
1. Balanced incomplete block design
2. Youden square balanced incomplete block design
3. Partially balanced incomplete block design
C. Factorial Experiments
Completely randomized factorial design
Randomized block factorial design
Completely randomized hierarchal design
Completely randomized partial hierarchal design
Split-plot design
Randomized block completely confounded factorial
design
7. Randomized block partially confounded factorial design
8. Latin square completely confounded factorial design
9. Completely randomized fractional factorial design
10. Randomized block fractional factorial design
11. Latin square fractional factorial design
12. Graeco-Latin square fractional factorial design
D. Analysis of Covariance Experiments
1. Completely randomized analysis of covariance design
5 Randomized block analysis of covariance design
- 3. Latin square analysis of covariance design
4. Completely randomized factorial analysis of
covariance design
5. Split-plot factorjal analysis of covariance design

And W

CR-k*
RB-k
LS-k
GLS-k
HGLS-k

BIB-t
YBIB-t
PBIB-t

CRF-pq
RBF-pq
CRH-plq)
CRH-pg)r
SPF-p.q

RBCF-p*
RBPF-p*
LSCF-p*
CRFF-p*
RBFF-p*
LSFF-p*
GLSFF-p*

CRAC-k
RBAC-k
LSAC-k

CRFAC-pq
SPFAC-p.q

*The letter(s) following the dash designates the number and levels of each treatment.
Refer to chapters in which the designs are discussed for an explanation of the abbreviated

designations.

categories, factorial experiments and analysis of covariance experiments.
The former pseudocategory is s0 designated because a factorial experiment
consists of a combination of elementary building block designs. The term
factorial experiment refers to the simultaneous evaluation of two or more

treatments in one experiment rather than to a distinct kin

d of experimental

design. Analysis of covariance experiments combine building block designs
with regression analysis procedures and thus do not represent a distinct
type of design. A brief description of some of the simpler designs follows.

COMPLETELY RANDOMIZED DESIGN

The simplest complete block experimental design from the stand-
point of assignment of subjects to treatment levels and statistical analysis
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is the completely randomized design. This design can be used to compare
any number of treatment levels. When two treatment levels are used, the
statistical test employed in the analysis is equivalent to a test by means
of a t ratio for uncorrelated groups. The general features of the design
can be illustrated by the microwave radiation example cited earlier. Let
b,, by, and by stand for treatment levels 0, 20,000, and 40,000 microwatts
of radiation, respectively. Fifteen albino rats are assigned to the three
treatment levels by means of a table of numbers. Food consumption of
the rats assigned to each treatment level is indicated by X;, where i
designates the ith rat in treatment level j. Table 1.4-2 shows the layout
of a completely randomized design. The average food consumption of
rats in each treatment level is designated by X.;. The dot in the subscript
indicates the variable over which summation has occurred. In this ex-
ample, treatment means are obtained by summing the scores over the
i = 1 through 5 rats. The average food consumption for all 15 rats is
designated by X.. .

TABLE 1.4-2 Completely Randomized Design

Treatment Levels

by by by
Xll Xlz X13
XZI Xzz X23
XJI X32 ‘XJJ
41 X‘Z X‘J
X5 X5z Xs3
Treatment means = X., X, X., Grand mean = X..

Here conclusions concerning the effects of microwave radiation
are restricted to the three treatment levels and to the 15 rats included in
the experiment. Edgington (1966) recently emphasized that random assign-
ment of subjects to treatment levels is essential if an experimenter wishes
to draw statistical inferences concerning treatment effects from non-
randomly selected subjects.* Because of the importance of the principle
of random assignment, an experimenter should always describe his tech-
nique for assigning subjects to treatment levels.

Associated with every experimental design is a mathematical
model that purports to include all sources of variability affecting individual
scores. To the extent that the model accurately represents these sources
of variability, the experimenter can evaluate the effects of a treatment.
The linear model for a completely randomized design is

*Few experiments in the behavioral sciences are carried out with randomly selected subjects.
When a random sample is used, the population sampled is likely to be so specific as to be of
little interest.
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(l) - X'J=“+ﬁ1+su

According to this model, an individual score is equal to the population
meap p, plus a treatment effect f3;, plus an error effect ¢;;, which is unique
for each individual subject. In a particular experiment, the parameters
u, Bj and & are unknown, but sample estimates of these parameters are
given by 4, P and &, respectively. It can be shown by maximum-likelihood

methods that unbiased estimates of the required parameters are provided
by the statistics

p=X. -
Bj = (X.J - X..) - B}
éij = (XU - X.J) - 8,-1.

The symbol — indicates that the term on the left is an estimator of the
term on the right. According to the maximum-likelihood method, the best
estimate is the one that gives the highest probability of obtaining the ob-
served data. It should be noted that a- maximum-likelihood estimator
is not necessarily unbiased, although the center of its distribution is gener-
ally close to the value of the parameter estimated. Assumptions associated
with the mathematical model for a completely randomized design are
discussed in Chapter 2 and explicitly stated in connection with the descrip-
tion of each design in subsequent chapters.

The meaning of the term error effect is somewhat elusive. An intui-
tive understanding of this term can be obtained by an examination of
Table 1.4-2 and the linear model for the design. It is obvious that the scores
for all 5 rats exposed to treatment level b, in this table will probably not
be identical. Variation among the five scores can be attributed to a variety
of sources—experiences of the rats prior to participation in the experiment.
unintended variation in administration of the treatment level, lack of
reliability in measuring the effect of the treatment level, etc. An error
effect is an estimate of all effects not attributable to a particular treatment
level. This can be seen from the linear model if the terms in equation n
are rearranged and statistics are substituted for the parameters. The
equation can be written

D A

& = Xij — B; —
Thus the error effect is that portion of a score remaining after the treat-
ment effect and grand mean are subtracted from it. An experimenter
attempts, by using an appropriate design and experimental controls, to
minimize the size of the error effect. Designs described in subsequent
paragraphs permit an experimenter to accomplish this by isolating addi-
tional sources of variation that affect individual scores.

RANDOMIZED BLOCK DESIGN

A randomized block design is based on the principle of assigning
subjects to blocks so that the subjects within each block are more homo-
geneous than subjects in different blocks. Assume that the 15 albino rats
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in the previous example were taken from five different litters. Rats from the
same litter can be expected to be more homogeneous with respect to genetic
characteristics than rats from different litters. In Table 1.4-3 the 3 rats in
each row”that comprise a block are from the same litter. Differences
among the litters can be regarded as a nuisance variable that is experi-
mentally isolated through the use of a randomized block design. The
subscripts of X;; designate a particular litter and treatment level, in
that order. Differences among the column means reflect treatment
effects, whereas differences among the row means reflect litter effects.

TABLE 1.4-3 Randomized Block Design

Treatment Levels

b, b, b, Block means
Block (litter) p, X4, X, X3 X,.
Block (litter) p, X1 X,; X,3 X,.
Block (litter) p; X3 X, " X3 X,.
Block (litter) p, Xa X4z Xas X,.
Block (litter) ps X5, Xs, Xs3 X,.
Treatment means = X, X, X, Grand mean = X..

Assignment of the three treatment levels to the rats is randomized indepen-
dently for each row. The linear model for this design is

Xij=#+ﬂj+7t,-+8,-j.

Unbiased estimates of the parameters are given by the statistics

ﬁ=X.. _;u

Bj=()7.,-—)7..) —»ﬁj
ﬁ.’ = (Y, - X) - T;
éij = (XU - X'] - .Y,'. + X—) - 8'-j,

The term m; represents an effect attributable to the ith block of 3 rats.
It can be shown, by regrouping terms in the linear model and substituting
statistics for parameters, that the error effect in a randomized block design

is equal to
é"=Xij_ﬁj_ﬁi_ﬁ-

1
The error effect for a completely randomized design was given earlier as
éij = Xij— Bj_ a
Thus the error effect &; for a randomized block design is equal to the
completely randomized design error effect minus a block effect #;. It is
apparent from this that the error effect for a randomized block design

will be smaller than the error effect for a completely randomized design if
the block effect #; is appreciably greater than zero.
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. One way of increasing the power of an experimental methodology
mentioned in Section 1.3 is to choose an experimental design that provides
for a more precise estimate of treatment effects and a smaller error variance.
A randomized block design is more powerful than a completely randomized
design if the block effects in the former design account for an appreciable
portion of the total variance. It should be noted that the increased power
of the randomized block design was made possible through the use of
matched subjects. In many research situations, the increased experimental

effort required to match subjects may not justify the greater power obtain-
able with a randomized block design.

LATIN SQUARE DESIGN

A Latin square design utilizes the blocking principle to obtain
homogeneity with respect to two nuisance variables. The levels of the
two nuisance variables are assigned to the rows and columns of a Latin »
square. Treatment levels are identified within each cell of the Latin square.
In the randomized block design example, subjects were equated on the
basis of genetic characteristics. It is reasonable to assume that rats in the
same litter are also relatively homogeneous in weight. However, because
the dependent variable in the radiation example is food consumption,
the experimenter might wish to control the extraneous variable of weight.
This can be accomplished by assigning the lightest rat in each litter to
category b,, the rat intermediate in weight to category b,, and the heaviest
rat to category b;. Blocking with respect to both genetic characteristics
a; and weight b; is shown in Table 1.4-4.

TABLE 1.4-4 Latin Square Design

Weight Categories of Rats

b, b, b,
Lightest Intermediate Heaviest Block means
c c c
Block (litter) a, ! 2 3 X,.
Xl 11 XIZZ X133
c c c
Block (litter) a, ? } ! X,.
Xl 12 X223 XZJ]
s < 2
Block (litter) a X,..
: X3l3 XJZI XJSZ
Weight means = X, X.,. X.;.
Grand mean = X...
Treatment level means: ¢; = (X133 + X321 + X233 = X

3= (Xa12 + X122 + X332)3 = X2
ey = (X313 + X223 + X133 = X.s
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The three subscripts designate a particular block, weight category.
and treatment level, in that order. The three treatment levels ¢, are randomly
assigned to the nine cells with the restriction that each treatment level must
occur in any row and any column only once. In order to achieve this
balance, a Latin square design must have the same number of rows, col-
umns, and treatment levels. Consequently, only 9 animals can be used in
the design shown in Table 1.4-4 instead of the 15 animals used in the two
designs described previously.

The linear model for this design is

Xp=p+0o+pB+ %+t

An individual score is equal to the grand mean g, plus a block effect a;
plus a column effect B; plus a treatment effect 7, plus an error effect
g 1f the block and column effects, @; and B, in a Latin square design
are appreciably greater than zero, the design may be more powerful than
either a completely randomized or a randomized block design. This is
apparent if the error effect is examined by means of the procedure used
for the two designs described previously. The error effect for a Latin square
design is equal to

A

éijk'—‘Xijk"&i"Bj“”f’k“#-

INCOMPLETE BLOCK DESIGN

An incomplete block design is particularly applicable to research
situations in which the number of subjects available for each block is
less than the number of treatment levels. If, for example, only 2 albino
rats from each litter are available, and the experimenter wants to use three
treatment levels, an incomplete block design is required. This design is
shown in Table 1.4-5. .

TABLE 1.4-5 Incomplete Block Design

Treatment Levels

b, b, b,y Block means
Block (litter) X, X3 X,.
Block (litter) X3, X3 X,.
Block (litter) X3, X, X,.
Treatment means = X, X, X, Grand mean = X..

The linear model for this design is
X.'j=ll+ﬁj+7ti+8‘-j.

It should be noted that each block contains the same number of
subjects, each treatment level occurs the same number of times, and




18

INTRODUCTION TO BASIC CONCEPTS IN EXPERIMENTAL DESIGN

subjects are assigned to the treatment levels so that each possible pair of
treatment levels occurs together within some block an equal number of
times. A design having these characteristics is called a balanced incomplete
block design. Partially balanced designs are those in which some pair of

treatment levels occur together within the blocks more often than do other
pairs.

FACTORIAL EXPERIMENT

A factorial experiment permits an investigator to evaluate the
combined effects of two or more treatments in a single experiment. This is
accomplished by combining building block designs so that one level from
each of two or more treatments is presented simultaneously. The most
commonly used building block designs are the completely randomized
design and the randomized block design. .

In the microwave radiation example, an investigator can, by using
a factorial experiment, evaluate the. effects of radiation and also the
effects of a second treatment, such as room temperature. Assume that
there are two levels of ambient room temperature, a, = 80° and a, = 65°
and three levels of radiation, b, =0,b, = 20,000, and by = 40,000 micro-
watts. Tables 1.4-6 and 1.4-7 illustrate the use of two frequently used
building block designs in a factorial experiment. In Table 1.4-6 the three
subscripts designate a particular temperature level, radiation level, and
subject, in that order. The three subscripts in Table 1.4-7 designate a
particular temperature level, radiation level, and block, in that order.

In the completely randomized factorial design of Table 1.4-6 it is
assumed that 18 albino rats are randomly assigned to the six treatment
level combinations. In the randomized block factorial design example
shown in Table 14-7, the treatment Jevel combinations are randomly
assigned within each block of litter mates. The models for the completely
randomized and randomized block factorial designs are, respectively,

Xijm=n+oa+ B; + aPi; + &min
Xijm =H + % + BJ + My + aﬂij + 8ijm-

The effect of temperature is designated by a; radiation by B; interaction
of temperature and radiation by 2fij experimental error by ¢, and litter
by 7,,- Both designs permit an investigator to determine if radiation dosage
has the same effect on food consumption at 80° ambient room temperature
as it has at 65° ambient room temperature. It is conceivable that radiation
might be more detrimental at a high ambient room temperature than at a
low ambient room temperature. If such a result is found, it is called an
interaction effect.

The error effect for a completely randomized factorial design, using
the scheme described previously, can be written

Emiij) = Xl’jm - & - Bj - “Bij - p
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If we let t;; stand for all treatment effects, the error effect can be written

A

Emip = Xijm — ty;— A
In this form the similarity between the error effect for this design and
the error gffect for a completely randomized design is apparent. This latter
error effect was given earlier as
éij = Xij - Bj - A

The similarity between the models for a completely randomized design and

a completely randomized factorial design is not surprising in view of

the fact that the former design is the building block for the latter design.
The error effect for a randomized block factorial design is

Eijm = Xijm — &; — Bj - iy — aAﬂij - f.

TABLE 1.4-6 Completely Randomized Factorial Design

Radiation Levels’

Temperature Levels b, b, b, A treatment means
X Xy X131
a, X112 X122 X132 X,
X113 Xi23 X133
Xle XZZI XZ}I
ax X212 X222 X232 in
X213 X223 X233

B treatment means = X.. X.,. X, Grand mean = X...

TABLE 1.4-7 Randomized Block Factorial Design

Temperature Levels a, a, a, a; a, a,

Radiation Levels b, b, b, b, - by b, Block mean
Block (litter) p, X1 X X Xan X221 Xom X
Block (litter) p, X2 Xz X2 Xan X322 Xam X.,
Block (litter) p3 Xy3 Xz Xy Xao X223 X233 X.3
Column means X, X X Xao X,,. X,  Grandmean = X..
A,lrealmentmean=(xl“+X“1+X“3+X|u+ ceo + X133)9 =X,

A, treatment mean = (X313 + X212 + Xps+ Xan + -0+ X133)/9 = X,

B, treatment mean = (X1 + X112 + X1is + Xy + Xaua + Xp03)/6 = X..
B, treatment mean = (X2, + X122 + X123 + X1 + X222 + X523)/6 = X.,.
B, treatment mean = (X131 + X132 + Xy33 + Xa3y + Xos2 X;33)/6 = X.5.
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If treatment effects are designated by t;, the error effect can be written

A

Eijm = Xijm — Ty — fim — &
It jis interesting to note the similarity between this error effect and the
error effect for a randomized block design, which is the building block
for this factorial design. The error effect for the randomized block design
was given earlier as

PY

éij'-“-xij“ﬁj-ﬁi-ﬁ-

QUESTIONS TO CONSIDER IN SELECTING
AN APPROPRIATE DESIGN

Statisticians have provided an experimenter with a vast array of
experimental designs. On what basis should an experimenter decide which
design to use? Selection of the best experimental design for a particular
research problem requires (1) a knowledge of the research area and (2)
a knowledge of different experimental designs. To arrive at the best experi-
mental design, an experimenter must consider the following questions:

1. What kinds of data are required to test the statistical hypotheses?

(a) How many treatment levels should be used?

{b) Should the treatment levels used in the experiment be selected on an
a priori basis or by random sampling from a population of treatment
levels?

(¢) Should a factorial experiment be used so that interaction effects may

~ be evaluated?

(d) Are all treatments and treatment levels of equal interest to the

- experimenter? Experimental designs may be used that sacrifice

power in evaluating some treatments in order to gain power in
evaluating other treatments.

2. Is the proposed sample of subjects large enough to provide adequate
precision in testing the statistical hypotheses?
(a) Do the available subjects represent a random sample from the popula-
tion of interest to the experimenter?
(b) Can the subjects be stratified into homogeneous blocks?
(c) Does the nature of the experiment permit each subject to be observed
under more than one treatment level?
(d) Will the treatment(s) produce physical or psychological injury to the
subjects? The use of potentially injurious treatments precludes the
employment of human subjects.

3. Is the power of the proposed experimental design adequate to test the
statistical hypotheses? '
(a) What is the size of treatment effects that the experimenter considers

to be of practical interest?
(b) What are the consequences of committing type I and type I errors?

4. Does the proposed experimental design provide maximum efficiency in
testing the statistical hypotheses?
(a) Would efficiency be improved more by using a design employing
blocks of homogeneous subjects or by using random assignment ofa
large number of subjects to the treatment levels?

2]
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(b) Can efficiency be increased more by the use of a larger sample size
or by exercising additional experimental controls during the conduct

of the experiment?
(c) Can efficiency be increased by the measurement of one or more
characteristics related to the dependent variable in order to use

, regression techniques?

(d) Can efficiency be increased more by the use of a complex experimental
design that requires considerable time to plan and analyze or by using
a simple design but a large number of subjects? If subjects are plentiful
and time required to obtain the data is sufficient, a simple design
utilizing a large number of subjects may be more efficient than a
complex design that involves costly planning and statistical analysis.

It should be apparent that the question “What is the best experi-
mental design to use?” is not easily answered. Statistical as well as non-
statistical factors must be considered. The discussion has emphasized
economic factors in the selection of a design because rules can be explicitly
stated for increasing the precision and power of an experimental methodol-
ogy; but, when efficiency is considered, such rules are difficult to formulate.

ROLE OF EXPERIMENTER AND STATISTICiAN

It is the conviction of the author that the selection of the best
experimental design for a particular research problem can be most expedi-
tiously accomplished when the roles of experimenter and statistician are
performed by the same person. This is essentially the same position taken
by Finney (1960, 3), who states, «  to write of the ‘experimenter’ and the
‘statistician’ as though they are separate persons is often convenient;
the one is concerned with undertaking a piece of research comprehensively
and accurately yet with reasonable economy of time and materials, the
other is to provide technical advice and assistance on quantitative aspects
both in planning and in imergretation ... the statistician can produce
good designs only if he understands something of the particular field of
research, and the experimenter will receive better help if he knows the
general principles of design and statistical analysis. Indeed, the two roles
can be combined when an experimenter with a little mathematical knowl-
edge is prepared to learn enough of the theory of design to be able to

design his own experiments.”

CRITERIA FOR EVALUATING AN
EXPERIMENTAL DESIGN

Many different sets of criteria could be given for evaluating an
experimental design. The criteria presented by Winer (1962, 47) and
Lindquist (1953, 6) are most helpful. The following questions, except for
number S, were selected because they touch on the major points presented
in this chapter.
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1. Does the design permit an experimenter 10 calculate a valid estimate of

" the experimental effects and error effects?

2. Does the data-collection procedure produce reliable results?

- 3. Does the design provide maximum efficiency within the constraints
imposed by the experimental situation?

4. Does the design possess sufficient power to permit an adequate test of
the statistical hypotheses?

5. Does the experimental procedure conform to accepted practices and
procedures used in the research area? Other things being equal, an
experimenter should use procedures that offer an opportunity for
comparison of his findings with the results of other investigations.

15 A REVIEW OF STATISTICAL INFERENCE

In the previous section an overview of experimental designs was
presented. This section is written to accomplish the same goal with respect
to procedures involved in statistical inference. It is assumed that the reader
is already familiar with basic hypothesis-testing concepts. Hays (1963)
presents an excellent introduction to this topic.

A distinguishing characteristic of the scientific method is the for-
mulating and testing of hypotheses. The testing of hypotheses requires
the a priori formulation of decision rules to guide the decision maker.
The problem may be stated: Given two mutually exclusive hypotheses
about a population, how does one decide on the basis of sample data which
hypothesis is supported? It will be apparent that this question lacks a
simple answer.

A statistical hypothesis is a statement about one or more parameters
of population distributions; and, as such, it refers to a situation that might
be true. Such a statement is always made with respect to a population
and not to a sample. Distinguishing between statistical hypotheses and
research or scientific hypotheses is important. Research hypotheses are
normally stated in general terms, at least in the initial stages of an inquiry.
In this form they are not amenable to evaluation through the use of the
procedures and theory of statistical inference. It may be possible, by means
of deductive reasoning, to transform a research hypothesis into a statistical
hypothesis that can be subjected to test. Statistical hypotheses refer to
population parameters, whereas scientific hypotheses refer to the phenom-
ena of nature and man (Clark, 1963).

In logic, the terms direct statement and indirect statement are
analogous in many ways to statistical and scientific hypotheses. A direct
statement is made in reference to limited phenomena that are directly
observable; for example, «This rat is running.” The truth or falsity of
such a direct statement can be determined by observing the rat. An indirect
statement refers to phenomena that cannot be directly observed or that
are so numerous in time that it is impossible to view them all. For example,
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“All rats run under condition X ” Such hypotheses can be evaluated by
inductive inference only and must be reducible to direct statements.
The chain of events required in testing an indirect statement is shown

in Figure,1.5-1.

Y Wy
lodirect e l.oshl vences of §
statement :—-———-b ) WF uctive __—_——b <> in direct statement form :‘
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Figure 1.5-1 Test of indirect statement by

deductive and inductive inferences.

If, in Figure 1.5-1, the term scientific hypothesis is substituted for
indirect statement and statistical hypothesis for direct statement, the
analogy with hypothesis testing is readily apparent. The experimenter
has the task of translating his research hypotheses into a dichotomous
set of mutually exclusive statistical hypotheses. It should be noted that the
chain of deductive reasoning from a question concerning nature to a
research hypothesis to a statistical hypothesis and the reverse process of
inductive reasoning from the statistical hypothesis to the question is an
exercise in logic rather than statistical inference. If an error occurs in the
chain, the statistical hypotheses subjected to test may have no bearing on
the original question, or incorrect inferences concerning the question may
be made. Grant (1962), Binder (1963), and Edwards (1965) have examined
in detail the relation between scientific and statistical hypotheses.

KINDS OF STATISTICAL HYPOTHESES

A null hypothesis (Hp) is the statistical hypothesis that is subjected
to a test. The notion that the null hypothesis refers to a parameter value of
zero is a simplification; the hypothesis can specify the parameter as having
any value, including zero. Less confusion will result if the null hypothesis
is considered as the hypothesis that is tested. The hypothesis that remains
tenable if the null hypothesis is rejected is called the alternative hypothesis
(H,). Hypothesis testing can be viewed as a procedure whereby an experi-
menter decides which one of a dichotomous set of mutually exclusive and
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exhaustive hypotheses is to be rejected and which one is to be accepted at
some specified risk of making an incorrect decision (Clark, 1963).

A statistical hypothesis can be either exact or inexact. The hypoth-
esis that the mean (u) of population j is equal to 40

(1) Hy: puj =40
is an exact hypothesis. The hypothesis
(2) Hy:p; < 40

is an example of an inexact hypothesis. The alternative (H,) to the exact
null hypothesis above can take any one of several different forms; for
example,

H,:p; =43 (exact alternative hypothesis)
H,: p; # 40 (inexact two-tailed alternative hypothesis).
The alternative to the inexact null hypothesis above can be written
H,: u; > 40.

If a comparison of the central tendency of two populations j and j is of
interest, the null and alternative hypotheses can take any of the following
forms:

]

HOZ;IJ—#J-=0

Hyipj—wp #0
or

Hy: pj — My <0
Hy:pj— Ky >0
or
Hy: i — By =20
Hy:pj— #y <0

It should be noted that hypothesis testing in the behavioral sciences
usually involves either two inexact hypotheses or one exact and one in-
exact hypothesis. The distinction between exact and inexact hypotheses is
unimportant from a practical standpoint because the same general test
procedures are followed in each case. Although we may speak of testing a
single hypothesis, in practice we behave as though we were deciding which
one of two mutually exclusive and exhaustive hypotheses is supported by

our data. The procedure by which we make this decision is called a statistical
test.

STATISTICAL TEST

A statistical test is the comparison of two hypotheses in the light
of sample data according to a set of decisior rules. The null hypothesis
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leads to a prediction, or anticipated value, and to a hypothetical sampling
distribution of anticipated values for a sample statistic. If the sample
statistic equals the anticipated value, or falls in a region of the sampling
distribution designated as a probable anticipated value, a decision is made
to accept The null hypothesis. On the other hand, if the sample statistic
deviates appreciably from the anticipated value, either a rare and improbable
event has occurred or the null hypothesis has led to a poor prediction and

should be rejected.

HYPOTHESIS TESTING

Hypothesis testing appears to be a straightforward objective pro-
cedure until an attempt is made to define such phrases as “probable
anticipated value,” “deviates appreciably,” and “poor prediction.” On what
basis does one decide which anticipated values are probable, or when the
sample statistic deviates appreciably from the anticipated value, or when a
null hypothesis leads to a poor prediction? The answer to these questions
in the behavioral sciences is that the experimenter falls back on a set of
conventions. A branch of mathematics known as decision theory deals
with the problem of choosing optimum decision rules. Although hypoth-
esis-testing procedures in the behavioral sciences use many notions
from decision theory, the application is incomplete and research is fre-
quently conducted according to rules that are less than optimum for the
experimenter’s purposes.

STEPS FOLLOWED IN TESTING A HYPOTHESIS

What conventions are currently used in testing a hypothesis?
These conventions can be summarized in four steps.

Step I: State a null hypothesis H, and an alternative hypothesis H,.

Step 2: Decide on an appropriate sample statistic and test statistic. The
selection of a test statistic is based on (1) Ho, (2) the chosen sample
statistic, and (3) tenable assumptions concerning the population
distributions. Assumptions underlying the sampling distributions of
&t and F test statistics are discussed in Section 2.1.

Step 3: Decide on a level of significance « and a sample size¢ N. « and N,
together with the sampling distribution of the test statistic under the
null hypothesis, determine the region for rejecting H,.
The location and size of the region for rejection of the null hypothesis
are determined by H, and a, respectively. An experimenter attempts to
select a level of significance so that the region of rejection contains
values of the test statistic that have a low probability of occurrence if
H, is true but a high probability if H, is true.

Step 4: Obtain the sample statistic and compute the test statistic. If the value
of the test statistic falls in the region of rejection, Hp is rejected in
favor of Hy. If the test statistic falls outside the region of rejection, the
experimenter may either accept H, or suspend making a decision
concerning it.
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These four steps and the conventions they summarize require some
amplification. First, the selection of an appropriate sample statistic is
determined by the experimenter’s interest in a particular parameter oOf
characteristic of a population. If only one population is involved, an experi-

~menter in the behavioral sciences is generally interested in testing a hypoth-

esis with respect to the central tendency of the population. If, as is
frequently the case, more than one population is involved, hypotheses
concerning differences among the populations in terms either of central
tendency or of dispersion may be of interest. The measures most often
adopted to describe central tendency and dispersion are the mean and
standard deviation, respectively.

Test statistics are similar to sample statistics in that both have
sampling distributions; however, unlike sample statistics, test statistics
are not used to estimate population parameters. Instead, test statistics
provide information in the form of a probability statement, which is used
by an experimenter in deciding whether or not to reject a null hypothesis.
Conventionally, an experimenter specifies a region of the sampling dis-
tribution of the test statistic based on « and H, that will lead to rejection
of the null hypothesis prior 10 computation of the test statistic. This region
is specified in such a way as to contain those values of the test statistic
that have a small probability of occurring if the null hypothesis is true
but a high probability of occurring if the alternative hypothesis is true.
If the test statistic falls in the region for rejection, either an improbable
event has occurred or the null hypothesis is false and should be rejected.

Two commonly used test statistics are z and ¢ ratios. For testing a
hypothesis concerning a single population mean, 2 and t ratios have the
following form:

Xt Xk
al/n NER

where X = sample mean used to estimate the population mean p, Ho =
value of population mean specified by null hypothesis, 6 = population
standard deviation, ¢ = unbiased estimate of population standard deviation
calculated from a sample, and n = number of observations in the sample.
If it can be assumed that the population sampled has a normal distribution,
2 and t are distributed as the normal curve and ¢ distribution, respectively.
That is, a z or t ratio can be computed for each conceivable sample of n
independent observations drawn from a normal population with mean =
p. The value of z or ¢ will vary over the different samples from the popula-
tion. If a plot of the probability-density of each z or t value is made, the
resulting distributions will be distributed as the normal distribution and ¢
distribution, respectively. The t distribution, unlike the z distribution,
actually is a family of distributions. The exact shape of the ¢ distribution
varies, depending on the number of observations in the sample. Prob-
abilities associated with obtaining various values of z or t are given in
Tables D.3 and D4, respectively. It should be noted that the denominator
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of a z ratio is a constant for any sample of size n because the population
parameter ¢is a constant. By comparison, the denominator of a ¢ ratio for
any sample of size n is a random variable because of sampling variation
in estimating the parameter . The numerators of both test statistics are
subject t0 sampling variation and hence are random variables.

In practice, the population variance required to compute z is
rarely ever known. The ratio

X - u

é/\/n

can be treated as a z variable provided that the sample size is large, say
around 100, and that the population has a normal distribution. An exami-
nation of Appendix Tables D.3 and D.4 reveals that the probabilities
associated with values of z and t are quite similar even for samples as
small as 30. As the sample size is reduced below 30, the correspondence
becomes poorer. Thus, for small samples, the t distribution should be
employed if a sample standard deviation is used to estimate o. The t
distribution and other useful sampling distributions are discussed in Section
2.1.

EXAMPLE ILLUSTRATING STEPS
IN HYPOTHESIS TESTING

An example may help to clarify the concepts and conventions
involved in hypothesis testing. Assume that we wish to test the hypothesis
that the average performance of some population on a psychological test
is greater than 100. An arithmetic mean is chosen as the appropriate
measure of central tendency. Two test statistics can be suggested for this
experiment : >

X — o X — o
=2"5 d =2
Sy Y ]

Let us assume in our example that the population is normally distributed
and that ¢ is known to equal 15. Under these conditions, the appropriate
test statistic is z. The statistical hypotheses can be stated as follows:

Hy: u < 100
H,: u > 100.

We will reject the null hypothesis in favor of the alternative hypothesis
only if an observed sample mean is so much larger than 100 that it has a
probability of .05 or less of occurring if the population mean really is
equal to 100. As written, the null hypothesis is inexact because it states a
whole region of possible values for the population mean. However, one
exact value is specified, 1 = 100. Actually, the hypothesis tested is u = 100
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versus some unspecified alternative greater than 100. If the experimenter
can reject the hypothesis that p = 100 at a = .05 level of significance,
then he can reject any other hypothesis that g < 100 at a level of significance
< 05. The decision rule for this example can be stated as follows: If the
test statistic falls among the highest 5 percent of 2’s in a normal distribution
under H,, reject Ho; otherwise do not reject H,. If Hy is rejected, the
experimenter, in this example, decides in favor of Hy.

We have stated the null and alternative hypotheses, decided on an
appropriate sample statistic and test statistic, and specified the level of
significance that will be used in the decision process. The final steps in
the hypothesis-testing procedure are to specify the size of the sample that
will be observed, obtain the sample, compute the sample statistic and test
statistic, and make a decision. Suppose that a random sample of n = 100
observations has been obtained from the population and that the mean
of this sample is equal to ¥ = 102. Is the deviation of this sample mean
from the predicted mean of 100 large enough to lead the experimenter to
reject the null hypothesis? The probability associated with obtaining a
sample mean as deviant as 102 if the true mean is 100 can be determined
from

X —po 102-100 20 4

2SS n 15 /100 15

and the cumulative normal probability table in Appendix D.3. According to
Appendix D.3, the probability associated with obtaining a sample mean of
102 if the true mean is 100 is approximately .09. According to the decision
rules outlined above, the null hypothesis is not rejected, because 09 > .05,
and therefore z does not fall in the region for rejection of Ho. The regions
for rejection or nonrejection of H, are illustrated in Figure 1.5-2. If the

»
Sampling

distribution
under Hyp

i 1 1 al
100 101 102 ‘ 103
«————— Do not reject Hy Reject Ho —>

Figure 1.5-2 Regions of the sampling distri-
bution of z that lead to rejection or nonrejection
of H, according to decision rules specified
previously.
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sample mean had been 102.5 instead of 102, the decision would have been
to reject Ho. This can be demonstrated as follows:

X — o 1025 — 1000

Y T

Accordiﬁ'g to the normal distribution table in Appendix D.3, the probability
of obtaining a sample mean of 102.5 if the true mean is really 100 is less
than .05. Thus, either a rare and improbable event has occurred or the
true parameter is not 100. This example was fabricated to illustrate the
steps involved in testing a statistical hypothesis. In real life most hypotheses
are concerned not with a single population but with differences among two
or more populations. The steps that have been described in connection
with a single population are also applicable to tests involving two or more
populations. Procedures and assumptions associated with testing statistical
hypotheses with respect to two or more populations are described in
Chapters 2 and 3. An excellent survey of hypothesis testing and statistical
inference is given by Clark (1963).

= 1.67.

TYPE | AND Il ERRORS

In carrying out the decision process outlined above, the experimenter
may make a correct decision or he may commit an error. If he decides to
reject H, when the population mean is really equal to 100, he has committed
a type I error. On the other hand, if he decides not to reject Hy when the
population mean is really equal to, say, 103, he has committed a type I
error. In summary, the two possible errors an experimenter may make are

Type I error.  Reject Hy (tested hypothesis) when it is true. The probability
2 is the risk of making a type I error.

Type 11 error. Fail to reject H, when it is false. The risk of making a type 1l
error is designated as f.

The regions corresponding to the probability of making a type I error (%)
and a type II error (B) are shown in Figure 1.5-3.

It is apparent from Figure 1.5-3 that the probability of making a
type I error is determined by an experimenter when he specifies a. This
probability can be made as small as an experimenter wishes. It should
be noted from the figure that as the area corresponding to a is made
smaller, the area designated as B becomes larger. Thus the two types of
errors are interrelated. The probability of committing a type Il error
is determined by a, magnitude of difference between the true parameter
and parameter under Ho, size of population error variance, and size of
sample (n). If, in the hypothesis-testing example described previously,
the statistic is equal to 102, a decision is made not to reject Hy. This decision
may be correct or incorrect, depending on the value of the parameter. If




CONCEPTS IN EXPERIMENTAL DESIGN

30 INTRODUCTION TO BASIC
Sampli Sampli
dis(rit‘:u(li'gn dist:"i‘gult?gn
- under Hy under H,

Sy

4'7 B TP
100 101 102 | 103

~<«————— Do not reject Hy > Reject Hyp —— >

Figure 1.5-3 Regions corresponding to prob-
abilities of making type | error (2) and type il
error (f). The region corresponding to a type |
error is determined by the experimenter when he
specifies x and H,. \f, for a given H, and true
alternative, 1 is made smaller, the probability of
making a type Il error is increased.

than 100, a correct decision has bzen made.

the parameter is equal to or less
a type 11 error has

On the other hand, if the parameter is equal to 103,
been made.

POWER OF A TEST

equal to 100, the probability of making a correct
decision is 1 — a. If, on the other hand, the parameter is equal to 103,
the probability of making a correct decision is 1 — B. This latter prob-
ability is called the power of the test. It is simply the probability of deciding
that H, is wrong, given 2 decision rule and the true value under H;. The
possible decision outcomes can be categorized as shown in Table 1.5-1.

If the parameter is

TABLE 1.5-1 Decision Qutcomes Categorized

True Situation

u =100 u=103
correct decision type 11 error
u =100 =1-a =
Decision -
type 1 error correct decision
u=103 =a =1-8

An experimenter attempts to select an experimental design and
set of decision rules that will result in the highest power for a given type 1
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error. How can the power of an experimental methodology be increased
for a given type 1 error rate? Two approaches were suggested in Section
1.3. One approach is to increase the size of the sample. A second approach
is to use an experimental design that provides for a more precise estimate
of treatment effects and a smaller error variance.

If information concerning the true parameter is available, the
probability of committing a type Il error can be determined. Generally,
however, the value of the parameter is unknown. In practice, an experi-
menter can specify various possible values of the parameter of interest to
him and then compute the probability of committing a type I error and
1 — B, given that the specified value of y is true. Let us assume that the
obtained sample statistic is equal to 102.5 and that an experimenter is
interested in determining the probability of correctly rejecting Hy if the
population mean is really equal to 103. The probabilities § and 1 — B
can be determined from

X —u 10251030 _

g n 151/10

According to the normal distribution table in Appendix D.3, the prob-
abilities § and 1 — B are .37 and .63, respectively. The location of the
regions corresponding to B and | — B are shown in Figure 1.5-3. In this
example the probability of making a correct decision if p = 103 is only .63,
whereas the corresponding probability if p = 100 is .95. The probabilities
associated with the possible outcomes of our decision rule are summarized
in Table 1.5-2.

-.33.

TABLE 1.5-2 -Probabilities Associated with the
Decision Process

True Situation

u= 100 u= 103
type Il error
u =100 1 —a=.95 g =37
Decision
type | error
u =103 a=.05 1—-p=.63

SELECTION OF A LEVEL FOR «a

In the preceding hypothetical example, the probability of a type 1
error (a) is much lower than the corresponding type Il error (B). Experi-
menters in the behavioral sciences frequently set the type I error rate at
05 or .01. This convention is based primarily on the notion that a type [
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errof is very bad and is to be avoided. In the present example, the decision
rule is biased in favor of deciding that the population mean is equal to 100
gather than, say, 103. In many research situations, the cost of a type 1 error
may be large relative to the cost of a type 11 error. For example, to commit
a type 1 error in concluding that a particular medication arrests the pro-
duction of cancer cells and therefore can be used in place of other medical
procedures is a serious matter. On the other hand, falsely deciding that the
medication does not arrest the production of cancer cells (type 1l error)
would result in withholding the medication from the public and would
probably lead to further research. In such a context, a type 11 error is less
undesirable than a type I error. However, in another context, concluding
that an experimental effect is not significant may result in an experimenter
discontinuing a promising line of research whereas a type I error would
mean further exploration into a blind alley. Faced with these two alter-
natives, many experimenters might prefer to make a type I rather than a
type 11 error. It is apparent from the foregoing discussion that the loss
function associated with the two errors must be known before a rational
choice concerning a can be made. However, experimenters in the behavioral
sciences are generally unable to specify the losses associated with the two
errors of inference. Therein lies the problem. The problem is resolved by
falling back on accepted conventions. The principal benefit of statistical
decision theory—that of using decision rules having optimum properties
for a given purpose—is seldom enjoyed by experimenters in the behavioral
sciences. A general introduction to the meaning of optimal solutions to
problems is given by Ackoff, Gupta, and Minas (1962).

- It is hoped that the preceding discussion helps to dispel the magic
that seems SO inextricably tied to the 05 and 01 levels of significance.
The use of the .05 or .01 level of significance in hypothesis testing is a
convention. When elther level is achieved by a test, it signals that an im-
probable event has occurred or that the hypothesis under test has led to a
poor prediction. A test of significance provides information concerning the
probability of committing an error in rejecting the null hypothesis. It is
one bit of information required in making a decision concerning a research
hypothesis. A test of significance embodies no information concerning
loss-values associated with the decision, the experimenter’s prior personal
convictions concerning the hypotheses, or the importance of usefulness
of the obtained results. Various problems associated with the uncritical
use of significance tests in research have been examined in detail by Bakan
(1966). Bayesian statistical theory represents an attempt to incorporate
prior information into the decision process, information that is not utilized
within the classical theories of Neyman-Pearson and Fisher. A rapproche-
ment involving the best features of classical theory, decision theory, and
Bayesian theory is to be hoped for. Binder (1964) in a review mentioned one
modification of classical theory that incorporates Bayesian theory. A
general introduction to Bayesian theory can be found in Edwards, Lindman,
and Savage (1963) and additional references in Binder (1964).
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Hypothesis-testing procedures should be viewed as tools that aid
an experimenter in interpreting the outcome of research. Such procedures
should not be permitted to replace the judicial use of logic by an alert
analytic experimenter. In particular, the technique of analysis of variance
described,in this book should be considered an aid in summarizing data.
It should be used to help an experimenter understand what went on in an
experiment; it is not an end in itself.
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SECTION 2.5 THE F RATIO IN ANALYSIS OF VARIANCE

THE F RATIO IN ANALYSIS OF VARIANCE
An F ratio in analysis of variance provides a test of the hypothesis
that all treatment population means are equal. That is,

Hy:py = pp =" = e =l
This null hypothesis is equivalent to the hypothesis that
Hy: ;=0  forallj.

We have seen that when H, is true,

E(MSgg) = o?
and

E(MSywg) = o2
When the null hypothesis is false and the alternative hypothesis that

Hi:B; #0 for some'j
is true,
E(MSgg) > E(MSyg)-

If the null hypothesis is true, we know from Section 2.1 that the random
variables MSgg/0? and MSyg/o2 are both distributed as chi-square
variables divided by their respective degrees of freedom. Thus, if the null
hypothesis is true, if MSgg and MSyg are statistically independent, and if
the population variances are homogeneous, the ratio

2.2
MSge _ oo/

- 2.2 = fvive)
MSwe  Gcxin/V2 !

is distributed as the F distribution, with v, = k — 1 and v, = kn — k
degrees of freedom. It can be stated without proof that the mean X;and
the variance 47 estimates are statistically independent provided that the
population is normally distributed. Hence MSgg and MSy are indepen-
dent as long as the k samples of observations are independently drawn
from normally distributed populations. The probability of obtaining an
F as large as that observed in an experiment if the null hypothesis is true
can be determined from a table of F given in Appendix D.

An F ratio, as defined above, always provides a one-tailed test of
H,. Ratios less than 1.0 have no meaning with respect to H,. Such ratios
may occur as a result of the operation of chance, for both numerator and
denominator are subject to sampling error. Ratios less than 1.0 may also
occur because of failure to randomize some important factor properly in
the experimental design or because some of the assumptions concerning
the linear model for the design are inappropriate. In summary, if two sets
of assumptions are tenable—those associated with the derivation of the
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2.6

”

distribution of F and those associated with the mathematical model for a
particular design—the F ratio can be used to test the hypothesis that all
treatment population means are equal.

EFFECTS OF FAILURE TO MEET
ASSUMPTIONS IN ANALYSIS OF
VARIANCE

The empbhasis in the previous sections of this chapter has been on
the assumptions necessary for the mathematical justification of hypothesis-
testing procedures using the F distribution. What are the consequences of
failure to meet these assumptions? Cochran and Cox (1957, 91) stated
that failure to meet the assumptions affects both the significance level of a
test and the sensitivity of a test. For example, a test performed at the .05
level may actually be made at the .04 or .07 level. Also, a loss in sensitivity
results when the assumptions are not fulfilled because it is often possible
to construct a more powerful test than that using the F ratio if the correct
model can be specified. Fortunately, the F distribution is very robust
with respect to violation of many of the assumptions associated with its
mathematical derivation. The effects of failure to meet certain assumptions
associated with the F distribution and the mathematical model for a
design are discussed in the following paragraphs. Cochran (1947) has
pointed out that it is impossible to be certain that all required assumptions
are exactly satisfied by a set of data. Thus analysis of variance must be
regarded as approximate rather than exact. However, it is generally possible,
by a careful examination of the data, to detect cases in which a standard
analysis will lead to.gross errors in interpreting the outcome of an experi-
ment.

ASSUMPTION OF NORMALLY
DISTRIBUTED POPULATION

One of the requirements in order for an F ratio to be distributed
as the F distribution is that the numerator and denominator of the ratio
are independent. If scores are randomly sampled from a normal population,
this requirement is satisfied.

An assumption of both the fixed-effects and random-effects models
is that the errors ¢;; are normally distributed for each treatment population.
Because the only source of variation within a treatment population are
the errors, the assumption of normally distributed &;;’s is equivalent to the
assumption of normally distributed scores.

A population of scores can depart from the normal distribution in
terms of either skewness or kurtosis, or in both skewness and kurtosis.
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SECTION 2.6 EFFECTS OF FAILURE TO MEET ASSUMPTIONS

Studies by Pearson (1931) and Norton, as cited by Lindquist (1953),
indicate that-the F distribution is relatively unaffected by lack of symmetry
of treatment populations. It is also relatively unaffected by kurtosis except
in extreme cases of very leptokurtic or platykurtic populations. For the
fixed-effe€ts model, an experimenter need not be concerned if the k popula-
tions exhibit a moderate departure from the normal distribution provided
that the k populations are homogeneous in form, for example, all treatment
populations positively skewed and slightly leptokurtic. In general, unless
the departure from normality is so extreme that it can be readily detected
by visual inspection of the data, the departure will have little effect on the
probability associated with the test of significance. It may be possible to
transform nonnormally distributed scores so as to achieve normality,
under conditions described in Section 2.7.

ASSUMPTION OF HOMOGENEITY OF
POPULATION-ERROR VARIANCES

The F distribution is robust with respect to violation of the assump-
tion of homogeneity of population-error variances provided that the num-
ber of observations in the samples is equal (Cochran, 1947; Norton as
cited by Lindquist, 1953). However, for samples of unequal size, violation

" of the homogeneity assumption can have a marked effect on the test of

significance. According to Box (1953, 1954a), the nature of the bias for this
latter case may be positive or negative.

Several statistics are available for testing the homogeneity assump-
tion that

Hy: 0} = 02 =+ = o = 0.
The alternative to the above nuil hypothesis is
H, : some ¢}’s are unequal.

A test statistic proposed by Bartlett (1937) is

2.30259 k
B = I:v lOgIONISerror - (vaOgloa-f):I’
i=1
where
k1 1
_ j=l v-’ A4
C=l+5g—

v; = degrees of freedom for é7, v = degrees of freedom for MS,,,,, equal
to Z%_,v,, 67 = unbiased estimate of population variance for the jth
population given by
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n 2
. . (3%
é? = EI;XZ————— n—1),

3 /
/
n

MS, e = 2%-16%/v, and k = number of variances. For values of v; 2 5,
B is approximately distributed as the »? distribution, with k — 1 degrees
of freedom. If v; < 5, tables prepared by Merrington and Thompson
(1946) may be used.

Two other tests are computationally simpler than Bartlett's test
and provide an adequate test of the assumption of homogeneity of variance.
The simpler of the two tests, which was proposed by Hartley (1940, 1950),
uses the statistic Frax,

largest of k variances _ 6Furges

F, max — -
. ~2
smallest of k variances  0jsmallest

[}

with degrees of freedom equal to k and n — 1, where k is the number of
variances and n is the number of observations within each treatment level.
The distribution of F,,, is given in Table D.10. The hypothesis of homo-
geneity of variance is rejected if Fo,y 1S greater than the tabled value for
F,paro If the n’s for the treatment levels differ only slightly, the largest of
the n's can be used for purposes of determining the degrees of freedom for
this test. This procedure leads to a slight positive bias in the test, that is, in
rejecting the hypothesis of homogeneity more frequently than it should be
rejected. _

The other relatively simple test of homogeneity of variance is that
proposed by Cochran (1941). This test statistic is given by

-

2
C — aj largest
k
a2
2. 6]
j=1

where 67),,ge is the largest of the k treatment variances and Z. 162 is the
sum of all of the variances. The degrees of freedom for this test are equal
to k and n — 1 as defined for the F; test. The sampling distribution of C
is given in Table D.11.

Since the F distribution is so robust with respect to violation of the
assumption of homogeneity of error variance, it is not customary to test
this assumption routinely. Both the Hartley and the Cochran tests have
adequate sensitivity for testing the assumption in situations where hetero-
geneity is suspected. If variances are heterogeneous, a transformation of
scores as described in Section 2.7 may produce homogeneity.

It should be noted that all three tests described here are sensitive
to departures from normality as well as heterogeneity of variances (Box
and Anderson, 1955). For a description of a test that is relatively insensitive
to departures from normality, see Odeh and Olds (1959).

’
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SECTION 2.7 TRANSFORMATIONS

ASSUMPTION OF ADDITIVITY OF EFFECTS

A basic assumption of the experimental designs described in this
book is that a score is the sum of the effects in the linear model. If the
assumptien of additivity of effects is not tenable, it may be possible to
achieve additivity by a suitable transformation of the scores.

References that provide additional discussion of the assumptions
in analysis of variance may be found in the papers by Eisenhart (1947) and
Cochran (1947).

TRANSFORMATIONS

A transformation is any systematic alteration in a set of scores
whereby certain characteristics of the set are changed and other character-
istics remain unchanged. Three major reasons for using transformations
in analysis of variance are

1. To achieve homogeneity of error variance.

2. To achieve normality of treatment-level distributions (or within-cell
distributions).

3. To obtain additivity of treatment effects.

Because the F distribution is relatively unaffected by lack of normality
and heterogeneity of variance, the first two reasons for performing a
transformation are less compelling than the third. Obtaining additivity of
effects is particularly important in designs such as a randomized block
design in which a residual mean square (abbreviated MS, ) is used as an
estimate of experimental error. For example, if treatment levels and blocks
are not additive, the expected value of the residual mean square is

EMS,.,) = 67 + 0},
instead of

E(MS,.,) = o7,

where o}, refers to the interaction of treatment levels and blocks. Inter-
action in this context is said to be present when the dependent variable that
is measured under the k treatment levels behaves differently for different
blocks of subjects. The expected value of the treatment mean square for a
fixed-effects model is

E(MSj) = 62 + no.

If the null hypothesis is true, then, according to Section 2.5, the numerator
and denominator of the ratio -
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MS,

.- : F =
Msres

s'hould provide independent estimates of the same population error
variance, o2. It is apparent from an examination of the expected values of
the two mean squares that this can occur only if 63, = 0. We shall return
to this point in Chapter 5.

Fortunately, a transformation that accomplishes any one of the
objectives listed above will usually accomplish the other two objectives.
In general, a transformation can be used whenever there is a relationship
between the means and variances of the treatment levels and whenever
the form of the treatment level distributions is homogeneous. It is not
always possible to find an appropriate transformation for a set of data.
For example, if any of the following conditions are present, no trans-
formation exists that will make the data more suitable for analysis of
variance: (1) means of treatment levels are approximately equal but
variances are heterogeneous, (2) means of treatment levels vary indepen-
dently of variances, or (3) variances are homogeneous but treatment level
distributions are heterogeneous in form. If no transformation is appro-
priate, and if the departures from normality and homogeneity are gross, an
experimenter may be able to use one of the nonparametric statistics for k
treatment levels described in Chapter 13. Although these statistics require
less stringent assumptions than analysis of variance, they are less powerful
and provide less information concerning the outcome of an experiment. It
should also be noted that the nonparametric procedures described in
Chapter 13 provide a test of the hypothesis that k = 2 population distribu-
tions of unspecified form are exactly alike. In order to test hypotheses con-
cerning population means, the homogeneity assumptions of analysis of
variance must be tenable. This point is discussed in Section 13.1. Another
alternative that may he available to the experimenter is to select a different
criterion measure. The choice of a dependent variable in the behavioral
sciences is often arbitrary; a different choice may fulfill the requirements of
additivity, normality, and homogeneity.

A number of procedures exist for determining which transformation
is appropriate for a set of data. Several methods are described by Olds,
Mattson, and Odeh (1956) and by Tukey (1949b). One procedure is to
follow general rules concerning situations in which a given transformation
is often successful. This approach will be emphasized in presenting each
of the types of transformations. Alternative procedures for selecting a
transformation will be described later.

SQUARE-ROOT TRANSFORMATION

For certain types of data, treatment level means and variances
tend to be proportional, as in a Poisson distribution, where u = ¢2. This
kind of distribution often results when the dependent variable is a frequency
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count of events having a small probability of occurrence, for example,
number of errors at each choice point in a relatively simple multiple T maze.
The data can often be normalized for this type of situation by taking the
square root of each of the scores. A transformed score X' is given by

x = /X.

If any X is less than 10, a more appropriate transformation is given either

by
X=JX+5 o X=JX+J/X+1

The latter transformation has been recommended by Freeman and Tukey
(1950). Tables of \/3(_ + /X + 1 are reproduced in Mosteller and Bush
(1954). The effects of performing a square-root transformation are shown
for the data in Table 2.7-1. An examination of the means and variances
of the transformed scores shows that they are no longer proportional;
additionally, the variances are more homogeneous. These transformed
scores are more suitable than the original scores for an analysis of variance.

TABLE 2.7-1 Original and Transformed Scores

Transformed Scores X' = JX + .5

Original Scores

by b, by by by by
3 6 12 1.87 2.55 3.54
0 4 6 ) 212 2.55
4 2 6 212 1.58 2.55
2 4 10 1.58 212 3.24
2 7 6 1.58 274 2.55
X=22 46 80 . 1.57 222 2.89
$? =22 34 8.0 28 20 2

LOGARITHMIC TRANSFORMATION

If treatment means and standard deviations tend to be proportional,
a logarithmic transformation may be appropriate. A transformed score X'
is given by
X' =logyoX or X' = log,o(X + 1).
The latter formula is used when some scores are zero or very small. Loga-
rithmic transformations have been found to be useful when the dependent

variable is some measure of reaction time and the data are positively
skewed.
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RECIPROCAL TRANSFORMATION

If the square of treatment means and standard deviations are pro-
portional, a reciprocal transformation may be appropriate. A transformed
store X' is given by

1 1
X =—- or X =——.
X X +1
The latter formula should be used if any scores are equal to zero. A reeip-
rocal transformation may be useful when the dependent variable is reaction
time.

ANGULARnCa)LR INVERSE SINE TRANSFORMATION
N=R ) Gy =t
The angular transformation is given by

X' = 2 arcsin \/—)—(_, X,: n
where X is expressed as a proportion. It is not necessary to solve for X’

in the above formula; a table of values of X from .001 to .999 is given in
Table D.13. The transformed values in Table D.13 are in radians. Bartlett

A

1 1 . _ 1
(1947) suggests that 2n O 4n be substituted for X = zero and 1 n
orl — Ztln be substituted for X = 1, where n is the number of observations

on which each proportion is based. An angular transformation may be
useful when means and variances are proportional and the distribution
has a binomial form. This condition may occur when the number of trials
is fixed and X is the probability of a correct response that varies from
one treatment level to another.

»

SELECTING A TRANSFORMATION

We have already described situations where particular transfor-
mations have been found to be successful. An alternative approach to
selecting a transformation uses the fact that means and variances are
unrelated for normally distributed treatment populations. The correct
transformation to use for a set of data is the one that removes the relation-
ship between the sample means and variances. This can be determined
by graphing the means and variances on the x and y axes respectively,
for each transformation and selecting the one that appears to remove the
dependency relationship best. The correctness of the selected transformation
can be verified by inspecting the transformed treatment distributions for
normality and homogeneity of variances.

An additional procedure for selecting a transformation is to apply
each of the transformations to the largest and smallest score in the treat-
ment levels. The range within each treatment level is then determined and
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SECTION 2.7 TRANSFORMATIONS

the ratio of the largest to the smallest range is computed. The transformation
that produces the smallest ratio is selected as the most appropriate one.
This procedure is illustrated in Table 2.7-2 for the data in Table 2.7-1.
On the basis of this procedure, a square-root formation would be selected
for these data.

Once an appropriate transformation is selected and the data
analyzed on the new scale, all inferences regarding treatment effects
must be made with respect to the new scale. In most behavioral research
situations, inferences based on log X's or \/TX_ ’s, for example, are just as
meaningful as inferences based on untransformed scores.

If additivity of treatment effects is the principal concern of an experi-
menter, the appropriateness of a particular transformation can be deter-
mined by a test of nonadditivity that is described in Section 5.3. This test
provides a means of determining if treatment effects are additive for the
untransformed scores and for any transformations that may be tried.
A mathematically sophisticated exposition of general issues involved in the
use of transformations is given by Box and Cox (1964).

TABLE 2.7-2 Transformations Applied to Largest
and Smallest Scores in Table 2.7-1

Treatment Levels Range, gen

bl bl bJ Rangesmallesl
Largest score (L) 4 7 - 12
Smallest score (S) 0 2 6
Range = 4 5 6 6/4 = 1.50
JL+ 5 212 2.74 3.54
JS+5 b3 1.58 2.55
Range = 1.41 > 116 99 1.41/99 = 1.42
log(L+1) .6990 9031 1.1139
log(S+1) .0000 4771 .8451
Range = .6990 4260 .2688 .6990/.2688 = 2.60
1AL + 1) .20 12 08
IS+ 1 1.00 33 .14
Range = .80 21 06 .80/.06 = 13.33
¥ L — “




