Pace 46

PC WEEK\APPLICATION DEVELOPMENT

JANUARY 16, 1989

In this, the
second of a six-
part series on
integrated com-
puter-aided soft-
ware engineer-
ing, or I-CASE,
technology,

James Martin
discusses the
CASE tool func-
3 tion of convert-
ing diagram
specifications
directly into op-
erational code.

The evolution of diagramming has
picked up staggering speed in the last
few years. Not long ago, systems ana-
lysts drew their diagrams with pencils
and erasers.

Hand-drawn diagrams often grew very
large, straggling across white boards or
pasted onto large sheets of paper. And a
design frequently consisted of multiple
binders of nested data-flow diagrams and
structure charts. These binders were usu-
ally fraught with inconsistencies and

omissions. What's more, the diagrams
were sloppy and the diagramming tech-
nique ill-conceived.

CASE tools bring to diagramming a
method for enforced precision. A good
CASE tool uses diagram types that are
precise and computer-checkable.

Among the diagram types used by
CASE tools implementing an informa-
tion-engineering methodology are decom-
position diagrams, dependency dia-
grams, data-flow diagrams, action dia-
grams (for specification of procedures),
data-analysis diagrams, data-structure
diagrams, entity-relationship diagrams,
data-navigation diagrams, decision trees

and tables, state-transition diagrams and
dialogue-design diagrams.

CASE tools that support a software-
engineering methodology use a subset of
these diagram types: chief data-flow dia-
grams, decomposition diagrams and enti-
ty-relationship diagrams.

Large, complex diagrams can be han-
dled by means of zooming, nesting and
windowing, among other techniques.
The computer quickly catches errors
and inconsistencies even in very large
sets of diagrams.

Today, business, government and the
military need highly complex and inte-
grated computer applications. The size
and complexity of these applications are
too great for any hope of accuracy in di-

ing without aid of a computer.

Remember, it's the meaning represent-
ed by the diagram that's valuable, A

8ood CASE tool stores the meaning of
the diagram, not the diagram itself, in a
computer-processible form. The tool
helps build up a design, a data model or
another deliverable segment of the de-

velopment process in such a way that it

can be validated and then used in a lat-
er development stage.
Diagr and thei

their i on by
computer are forms of thought process-

ing The analyst, designer, rogrammer,
user and executive need al}nmuy of dl;a
g-mnwpelonsslsth\clmumud;@m-
though there are a host of diagram types,
a minimum number of icons should haye
to be learned, and their meanings should

Diagramming Methods Bring Precision to CASE Tools

be as obvious as possible.

The diagrams must be sufficiently
complete and rigorous to serve as a ba-
sis for code generation and for automat-
ic conversion of one type of diagram
into another.

The diagrams of the early “structured
revolution” aren’t good enough for this.
In this earlier technology, the analyst
and designer had to use human intelli-
gence to bridge gaps between one type
of diagram and another, and they often
made mistakes in doing so. I-CASE tools
need a complete, rigorous set of dia-
gramming standards.

With appropriate diagramming tech-
niques, it's much easier to describe com-

mation collected in a centralized ency-
clopedia when the diagrams are drawn).
When changes are made to systems, the
diagrams are changed on the screen, and
the code is regenerated. The design doc-
umentation is generated automatically
and thus does not slip out of date as
changes are made.

Philosophers have often said that
what we are capable of thinking de-
pends on the language we use for think
ing. The diagrams we draw of complex
processes are a form of language. With
computers, we may want to create pro-
cesses more complex than those we
would perform manually. Appropriate

diagrams help us to visualize and invent

David Hannum

Diagrams are aids to clear ideas. A poor choice
can inhibit thinking. A good choice can speed
work and improve the quality of the results.

plex activities and procedures in dia-
grams than in text. A picture can be
worth much more than a thousand
words. Computerized diagrams do not
allow the sloppiness and woolly think-
ing common in textual specifications.

Engineers of all types use formal dia-
grams that are precise in meaning—me-
chanical drawings, architects’ drawings,
circuit diagrams, microelectronics de-
signs, and so on. Software engineering
and information engineering also need
formal diagrams with standardized dia-
gramming constructs.

As in other branches of engineering,
the diagrams used by integrated CASE
products become the documentation for
systems (along with the additional infor-

those processes.

For someone developing a system de-
sign or program, the diagrams used are
aids to clear ideas. A poor choice of dia-
gramming technique can inhibit think-
ing. A good choice can speed work and
improve the quality of the results,

When several people work on a sys-
tem or program, the diagrams serve as
an essential communication tool. A for-
mal diagramming technique is needed to
enable the developers to interchange
ideas and make their separate compo-
nents fit together with precision.

When systems are modified, clear dia-
grams are an essential aid to mainte-
nance. They make it possible for a new
team to understand how the program

works and then to design changes. When
a change is made, it often affects other
parts of the program.

Clear diagrams of the program struc-
ture enable maintenance programmers
to understand the consequences of the
changes they make. When debugging,
clear diagrams are also highly valuable
tools for understanding how the pro-
grams ought to work and for tracking
- down what might be wrong.

Diagramming, then, is a language, es-
sential both for clear thinking and for
human communication. An enterprise
needs standards for its information-sys-
tems diagrams, just as it has standards
for engineering drawings. A diagram
and its associated information in a
CASE tool can be very different from a
diagram on paper. Paper constrains the

diagram to two dimensions.

With a computer, many different rep-
resentations of the design can be linked
together logically. For example, the
same block may appear on both a data-
flow diagram and a decomposition dia-
gram. Data access on an action diagram
must relate to information specified on
an entity-relationship diagram or in a
data model. The inputs and outputs to a
procedure represented by an action
must be the same as those on the corre-

sponding data-flow diagram.

Linking Diagrams Together
The terms “hyperdiagram” or “hyper-
chart” describe a representation of
plans, models or designs in which many
two-dimensional representations are log-
ically linked together. A simple hyper-
diagram is a diagram in which the de-
tails of objects may be displayed in win-
dows. A more complex hyperdiagram
uses many types of two-dimensional dia-
grams. A block or a line may be dis-
played in a window as text, as a fill-in-
the-blanks form, an action diagram, a
matrix or a different type of diagram.
The figure shows a family of screen
windows that are part of one hyper-
diagram. The hyperdiagram can be ex-
plored by pointing to objects or associa-
tions and displaying details of them. An
I-CASE tool kit gives the implementor
the facilities to explore or to build the
hyperdiagram. The tool should enforce
consistency within the hyperdiagram.
The set of screens in the figure illus-
trates how diagrams are linked to form
hyperdiagrams. Each screen is part of a
logically consistent structure. Because
the hyperdiagram contains links be-
tween different types of representations
and enforces consistency among these
representations, it's a major advance
over paper-oriented methods of analysis
and design.
Next week, I'll discuss the very heart
of an I-.CASE tool: an encyclopedia or re-
pository. B

Th,e'James Martin Productivity Series,
an in, [m‘mation service updated quar-
terly, is available through High Pro-
ductivity Software Inc, of Marble-
head, Mass. (800) 242-1240. For infor-
mation on seminars, contact Tech-
nology Transfer Institute, 741 10th St,
Santa Monica, Calif. 90402 (213) 394.
8305. In Europe, contact Savant, 2
New St, Carnforth, Lancs., LA5 9BX
United Kingdom (0524) 734 505.




