PC WEEK\APPLICATION DEVELOPMENT *

FEBRUARY 13, 1989

In this, the
last of a series
of ‘columns on I-
CASE technolo-
gy, we discuss
the improve-
ment in produc-
tivity that can
be realized with
the use of CASE
tools.

To achieve
high productivity

in building com-
puter applica- '
tions, it's neces-
sary not only to select the best CASE
and I-CASE (integrated computer-aided
software engineering) tools, but also to
adapt your organization and methods to
take full advantage of these tools.

The simplest CASE tools are little

‘more than diagramming aids. They sim-
plify the drawing of diagrams and en-
able them to be kept tidy and modified ; .
quickly.

Code generators enable implementors
to produce a working program quickly.
However, if the generator is not linked
to a dictionary, data model or design
tools, the programs generated may be
incompatible fragments, ill-designed and
not linked together. i

To achieve high productivity, the tools
for design need to be tightly coupled to
the code generator. The tools should em-
ploy a data model and should enable

the design to be represented in a power- «,

ful, visual, easy-to-modify form from
which code is generated directly.

The programs should be quickly exe-
cutable so that the designer can observe
what they do, adjust or add to the de-
sign, rerun the programs, enhance the -
design and so on, until a comprehensive
system is created.

The principle of “what you see is
what you get” should apply to the com-
bination of visual design tool and code
generator. The need for manual coding
of procedures should be removed to the
maximum extent.

The generator may initially be used to
produce structured code that relates to
the design screens. This code may be
used for prototyping and debugging. Be-
cause structured code does not give opti-
mal machine performance, for heavy-
duty applications the code may be fed
into an optimizer, which creates code
with optimal machine performance. This
code will never be touched by mainte-
nance programmers; all maintenance is
performed at the specification level.

The integrated designer-generator tool
should aid in rapid construction and
modification of prototypes. It should
generate test data and provide testing
tools. It should generate database code
.and job-control code, so that the pro-
gram can be executed quickly when de-
sign changes are made.

Productivity in system development is
strongly affected by the number of peo-
ple in the development team. Large
teams tend to give low development
productivity, because the number of in-
teractions between team members in-

creases rapidly as team size increases.

is to avoid having large teams of pro-
g : > Vo kb2 op0d

s iy

Modify Your Methods To Take Advantage of I-CASE Tools

grammers. As shown in the figure, con-

* ventional technology often requires

large development teams and long devel-
opment cycles. In contrast, many pro-
jects or subprojects developed with I-
CASE tools can be completed by one
person. The brilliant, fast or hard work-
ing individual then has the opportunity
to excel. Management should encourage
the most capable implementors to learn
the full power of an I-CASE tool set in
order to maximize productivity.

Big projects should be subdivided into
small projects, each of which can be
completed relatively quickly by one, two
or, at most, three implementors. The
CASE tool should make it possible to de-

components should be catalogued in a
CASE encyclopedia so that they can be
selected when needed and modified as
required.

A large enterprise should employ the
same I-CASE tool set at all locations
where systems are built so that common
data models, designs and program com-
ponents can be used. Telecommunica-
tions access to mainframe encyclopedias
aids in the sharing of applications, docu-
ment design, accounting procedures and
50 on.

In systems developed by traditional
manual techniques, maintenance is a
major problem. Systems are often diffi-
cult and time-consuming to change. Af-

Productivity Economy WitH .
I-CASE Technology

~ Convehtional
" Multi-Person
el Projeet

| David Hannum

' Integrated CASE tools promote the use of
highly productive small development teams and
increase the quality of developed applications.

I
s
i

fine with computer precision the inter-
faces between the components generat-
ed by separate teams. 3 o A

At the start of a large project, an enti-
ty-relationship diagram should be creat-
ed for the data that will be used, the
data elements should be defined and the
data correctly normalized. The same
data model should be used for all sub-
projects. The flow of data and control
among subprojects should be defined
with the CASE tool. |

Today's programmers constantly rein-
vent the wheel. They struggle to create
something that has been created endless

pid] " times before. Major productivity gains
One objective when using CASE tools will result from 0 &

i

ter being modified many times, they of-
ten become fragile; even minor changes
result in bugs and breakdowns.
' A goal of I-CASE tool sets is to pro-
duce systems that are quick and easy to
change. Maintenance isn't done by dig-
ging around in spaghetti code but by
modification of the design specifications,
followed by regeneration of code.
Traditional maintenance is often
made more difficult by inadequate docu-
mentation. When maintenance program-
mers make changes, they often neglect
to make corresponding changes to the
documentation. With [-CASE tools, the
content‘ of the encyclopedia is the docu-

BRYEIS T

Paper can be

signs, data

D L L NN 1

ih,

required. When changes are made to the

design, the encyclopedia is automatically

updated.

The use of I-CASE tools avoids the
spaghettilike mess of the past and pro-
motes cleanly structured engineering
with relatively fast and easy techniques
for maintenance.

Although in some corporations the
main thrust with CASE tools is to in-
crease the productivity of application
building, in others the goal is to improve
the quality of systems and achieve coor-
dination across a complex enterprise.

The most impressive system is not
created with a single design and imple-

. mentation. It evolves, being improved in
many steps at different times and
places.

The future will bring impressive soft-
ware and corporate computer systems,
and these will also be grown over many
years with many people and organiza-
tions adding to them.

It’s difficult or impossible to grow
software that's a mess. To achieve long-
term evolution of software, we need
structured models of data and struc-
tured models of processes.

Designs too complex for one person to
know all the details of must be repre-
sented in an orderly fashion in an ency-
clopedia so that many people in many
places can add to the design. The design
needs standards and reusable compo-
nents and an architecture that facili-
tates the incremental addition of new
functions.

For executives to control the behavior
of computers that automatically place
orders, select suppliers, make trades and
so on, the behavior of these systems
should be expressible in rules and dia-
grams that the executives understand.

When It Works, It Really Works

Some corporations have impressive
computer systems designed to give them
a competitive advantage: Take Ameri-
can Airlines with its on-line terminals in
travel agents’ offices, or Benetton with
its worldwide information system that
makes the world activities “transparent”
to the decision makers near Rome.

Systems like these demonstrate how a
corporation can pull ahead of its compe-
tition by using information and automa-
tion better. Efficient corporations will
evolve computing systerns that are
worldwide and exceedingly complex,
but nevertheless enable procedures to be
adapted quickly to changing needs.

To do this requires engineering-style
methodologies carried out with automat-
ed tools. It requires encyclopedia-based
I-CASE tools. Simple software engineer-
ing is not enough—to build a computer-
ized corporation we need information
engineering. B

The James Martin Productivity Series,
an information service updated quar-
terly, is available through High Pro-
ductivity Software Inc., of Marble-
head, Mass. (800) 242-1240. For infor-
mation on seminars, contact (in the
United States and Canada.) Technology
Transfer Institute, 741 10th St., Santa
Monica, Calif. 90402 (213) 394-8305.
In Europe, contact Savant, 2 New St.,
Carnforth, Lancs, LA5 9BX United
Kingd. (0524) 734 505.

wher\

B ﬁ' — J

