Pace 78

o g WEEK\APPLICATION DEVELOPMENT: [2 1

Juy 17, 1989

SAA’s Standards, Tools Promise Big Productivity Gains

This is Part 2
of a series of
articles on
IBM’s Systems
Application Ar-
chitecture
(SAA). Integrat-
ed computing
environments
such as SAA
will have a ma-
jor impact on

the software
technologies of
the '90s.

SAA is based
on a well-defined architecture and a set
of consistent standards that define how
applications are built. The use of stan-
dards and architectures is not new to
the computer industry. Standards orga-
nizations have been in place for years.

There is always a conflict between
standards setting organizations and ven-

dors developing proprietary products. A
primary function of standards is to cre-

ate an open environment. However, ven-
dor-imposed standards are often de-
signed 1o Jock customers into a propri-
etary environment. Some de facto
standards are set simply because one
product becomes widely used.

The standards for databases, commu-
nication facilities and languages have all
focused on the functionality supported
by these technologies. Over the last few
vears the importance of standard appli-
cation architectures has emerged. Many
vendors are putting increasing emphasis
v developing standard application envi-
ronments.

Standards organizations are wrestling
with the same issues. The Open Soft-
ware Foundation was organized to ad-
dress the issues of Unix environments
and is nsing IBM's AIX as the basis for
the future development of a Unix stan-
dard. Its goal is to provide an open
framework for application development
that does not lock a customer into a sin-
#le-vendor environment.

The American National Standards In-
stitute is also looking at these issues and
is working on a standard for the critical
base technology of a repository. A re-
pository will contain full application
specifications that can then be used to
generale applications for particular en-
vjromnvn(s. A common repository of de-
sign specifications is
nent of computer-aided software engi-

neering tools.

Users and
the value of

tion-enabling architectures, Whenever a

repelitive aspect of application develop-

ment can be identified, a standard way
of doing it can be specified, a tool to
make it happen can be built, and the
time it takes to build an application is
reduced.
l 1BM's S{\A 1S an impressive effort to
unify IBM's application environments
under a single architecture. The result,

will be tremendous
e Pproductivity gains

i SAA provides st

’ S standards for g e
| terfaces to o machine: the oy
(

i Access (CUA); (e Common Program.

¢ ming Interface (CPL); and the Common

vendors alike are realizing

an essential compo-

specilying standard applica-

Common User

Communication Services (CCS).

Let's look at how each of these encap-
sulates some of the repetitive work of
application development.

Common User Access

Every application has a user inter-
face. The developer must design the user
interface and implement it. In the past,
user interfaces were developed at the
convenience of the programmer. The us-
ability of the interface was secondary to
simply getting the application to work.

Today, everyone recognizes the value
of a good user interface—it changes the
relationship between users and applica-
tions. Poorly designed interfaces make

interface, eliminating much of the de-
bate over what the interface will look
like. Then it specifies the tools that will
be used to enable that design, thus pro-
viding for consistent tools across differ-
ent hardware and software environ-
ments. In both cases, the architecture
isolates and encapsulates a portion of
the repetitive programming work.

The design chosen for the CUA is a
good interface design, based on Xem).(S
research and popularized by the Macin-
tosh. It was further refined and devel-
oped through user-interface studies at
IBM, which enhanced it with technology
acquired from firms with excellent user-
interface reputations, such as Metaphor.

Code Should Be Divided ito Modales That M
Cottifon Programming trtertace qtm’e H

dYFatiriable
W fk&taﬂur

[#-Hgugs
Seétv|ces
InteHaes

| H-Hbu!!
. Setvlexs
L

John Avakian

SAA provides a powerful means Jor programmers to avoid
many repelitive and difficult tasks of application develop-

ment not directly related to application-functional logic.

e

the user a slave to the application and
force the user to learn an alien syntax
that is unique to the application. With a
good interface, the user is in control and
the application becomes a tool.

The problem is, it’s difficult to design
and build a good user interface, People
disagree on what is the best interface,
Without an integrated application envi-
ronment, there are no consistent tools
for building interfaces, An application
that runs on one machine can't be
ported to another because the tools for
enabling the interface are totally dif-
ferent.

The CUA addresses both these issues.
First, it specifies the design of the user

There are two levels of tools specified
for enabling CUA interfaces, One is the
presentation interface, which gives the
programmer a high degree of control
over building interactive applications,
such as spreadsheets or graphics pro-
grams. The other is the dialogue inter-
face, which allows the programmer to
specify logically the components of the
interface, such as menus and forms,
These standard constricts do not have
to be reimplemented, hut simply logical-
ly specified. The tools do the rest.

Common Comm Services

The CCS provide the greatest architec-
tural simplification for the programmer,

The vast amounts of code needed to
connect different machines is completely
hidden. The programmer simply uses
high-level verbs that specify program-to-
program communications.

Again, the repetitive work of connect-
ing machines is isolated and encapsulglt-
ed by the SAA architecture. The archi-
tecture allows the programmer to con-
centrate on application logic rather than
on communication implementation. Only
the logiical connections between pro-
grams need to be specified. Furthermore,
these connections are specified in a con-
sistent, standard fashion, independent of

machine environment.

Common Programming Interface
The CPI contains language standards
and service standards. The provision of
common in-house services makes SAA a
powerful standard. As shown in the
graph, the language, user-interface, com-
munications and in-house services are
all specified as part of the CPL The
graph also illustrates that application
modules developed using CPI services
exactly mirror the architectural bound-
aries of CPL
Another important service supplied
by the CPI is database access. There are
many different types of data- and file-
management facilities available today,
and each requires different implementa-
tions in different environments. The pro-
grammer has to decide which facility to
use and learn how to use it.
With SAA, relational database man-

agement becomes the standard. Further-

more, the interface to relational
databases—Structured Query Language
(SQL)—is consistent from environment
to environment. Because SQL deals only
with the logical access of data, the pro-
grammer is freed from having to write
code to a physical database design.
Again, the data access and retrieval is
isolated and encapsulated for enhanced
programmer productivity.

SAA and the tools that enable it pro-
vide a powerful means for programmers
to avoid many of the repetitive and dif-
ficult tasks of application development
that are not directly related to applica-
tion-functional logic. It does this by
architecturally isolating certain elements
of application design, specifying stan-
dards for those elements and providing
tools that enable the standards.

Every organization using SAA will
certainly benefit from SAA, but even
larger benefits can be gained by extend-
ing the architecture to better model its
own application-development process.

Next week, I'll describe the planning
functions that are required today to pre-
pare for the integrated computing envi-
ronments of the 1990s. m

The James Martin Produclivily Series,
an information service updated quar-
terly, is available through High Pro-
ductivity Software Inc., of Marble-
head, Mass. (800) 242.1240. For infor-
mation on seminars, please contact (in
the United States and Canada) Tech-
nology Transfer Institute, 741 10th St.,
Santa Monica, Calif. 90402 (213) 394-
8305. In Europe, contact Savant, 2
New St, Carnforth, Lancs., LA5 9B.
United Kingdom (0524) 734 505,

