Pace 76

PG WEEN\APPLICATION DEVELOPMENT

SEPTEMBER 11, 1989

This is the sec-
ond in a series
of articles on ob-
ject-oriented
techniques, a
new technology
that's changing
the way pro-
grammers and
users deal with
computers.

When we think
of the term “ob-

' ject,” we have an
intuitive grasp of
what that

means. In our everyday world, objects

have both properties and behaviors: An
oven has shape and size; it can bake and
broil.

An object. in a program also has prop-
erties and behaviors. For example, an
order form in a business application has
properties such as items and quantity
ordered, as well as behaviors such as
process and verify.

It's easy to see how object-oriented
programming can be used to describe
environments in which a data-modeling
language defines objects and relation-

ships. In fact, object-oriented technology
originated with languages designed for
simulation and is thriving in graphics
applications where the user manipulates
objects on the screen. However, the for-
mal term “object” has meaning beyond
the commonsense meaning of the word.

The programmer's objects can repre-
sent physical entities such as inventory
items, but they can also represent more
abstract entities such as stacks, num-
bers, file-browsers, dispatchers or col-
lections.

Because it contains both data (proper-
ties) and procedures (behaviors), a pro-
gramming object can be used to
“modularize” any programming concept.
Examples include collections, which are
objects made up of other objects, and
browsers, which are procedures for ex-
amining files.

The properties of an object can’t be
directly accessed from outside the ob-
ject. They are only manipulated by the
behaviors of the object. The behaviors of
an ohject can only be invoked by send-
ing messages to the object. The imple-
mentation of the properties and
behaviors of an object is completely hid-
den from the outside. The object’s data
and processes are encapsulated within
the object.

To illustrate this, let's Jook at portions

of a simple customer order-entry appli-
cation. The system has an object—the
order—which has behaviors that allow

manipulation and inspection of jts prop-
erties. The definition might look like
this:

Object class: order; property variables:
customer, item, quantity; behaviors: veri-
Iy, process, hack order, add,

An important distinction needs to be
made between a class of objects and
particular objects, The definition of the
(ilzlxq of object “order” contains defini-
t!nn of the property variables, Each par-
ticular ohject contains just the values
for the variables of that object. Mes.
SAges are sent (o the Particular object.

00P Goes Beyond the Commonsense Meaning of ‘Object

The behaviors for responding to the
message depend on the valqes of the
variables of a particular oth_actA

Object-oriented programming tech:
niques are used to invoke the behz.u.nors
in an object. For example, the verifica-
tion message to an order object would
invoke an order behavior that wou.ld
send a message to an inventory object
requesting the quantity on hand for the
item. The inventory object could, in
turn, send messages to other objects to
obtain the quantity on hand.

The benefit of this approach is in-
creasingly important as systems get
large and complex. Programmers imple-
menting the order object do not need to

Sleels recelve ahd
SAORa s msoAged.

Eolicy A

OOP lets a compan
logic of a manufacturing

specific. For example,
:Eeuilx?v;:iory object shown in t_he fig-
ure, the top of the hierarchy H“l'lght be
the abstract object, “collection.” It re-
sponds to a number of messages, .such"
as “add an item” and “return an item.
1t is a general-purpose programming
construct that might have heep
predefined in the system or might be
part of a programmer’s library of reus-
able code.

The programmer implementing the in-

ventory object hierarchy might define
categories of parts (such as Type A
part, Type B part, and so on) as a sub-

class of the collection because the inven-

tory is a collection of different types of

Y program more complexity into the
application, giving it more JSinely

tuned control and a significant competitive advantage.
— e e i

know anything about the internal work-
ings of the inventory object. They sim-
ply have to know which messages the
inventory object will respond to and
send those messages to it,

In addition, object-oriented languages
allow information to be organized con-
ceptually. The object definitions are or-
ganized in a class hierarchy, as shown in
the figure. A class above an object is its
superclass, and the one below is a sub-
class. Objects in subclasses can inherit
any or all of the properties and
behaviors of the classes above,

The programmer working with an ob-
Ject-oriented language defines classes of
objects ranging from the general down

items. The inventory items in each cate-
gory of parts can themselves be objects,
such as screw or bolt, The inventory ob-
Ject inherits all the behaviors of the col-

lection object and category object,
that with no sttt

ventory items,
Each of the inventory types would

have to respond to the mes<age, “check

reorder policies j
from other p;

in designing which sends the same check reorder

essage to all inventory type objects.
mslél?egability of objects to respond to the
same message and each implem.ent it ap-
propriately is called pol_ymorp}usm. It is
one of the aspects of object-oriented pro-
gramming that simplifies complex qo(ie.
To better understand polymorphlsm,
let's look at the inventory object. One of
its behaviors checks all inventory for
items that might need reordering. It is
simple to make a loop that sends the‘
check-reorder message to each of the in-
ventory items in the collection. The code
might look like this:
global-check-reorder :
doi=1toend . ‘
check-reorder — > inventory-item(i)
This has tremendous implications for
program maintainability. As new item
types are added to the inventory and
new procedures for checking reord.ers
are implemented, the code for the inven-
tory object never needs to be change(!.
This is unlike a conventional application
that would need to dispatch the correct
reorder procedure for each inventory
type.

Fine-Tuned Inventory Control

In this example, polymorphism, cou-

' pled with both the inheritance of reor-
der policies for standard parts and the
ability to customize and override the
standard policies for particular parts, al-
lows an organization to program more
complexity in the reordering logic of a
manufacturing application, thus giving
it more finely tuned inventory control
and a significant competitive advantage.

A number of languages are available
for programmers interested in experi-
menting with object-oriented program-
ming. The oldest and perhaps the purest
is Smalltalk, which has some excellent
implementations on small machines, The
system enforces object-oriented pro-
gramming throughout and is an excel-
lent tool for learning pure object-orient-
ed programming.

A different approach is to enhance
existing languages with object-oriented
capabilities. This is the approach taken
by C++ and Objective-C, which are
both C extensions, as well as Flavors,
which is a LISP extension. While this
approach provides the familiarity of a
conventional language, it has the disad-
Vvantage of not forcing the programmer
to use object-oriented techniques consis-
tently. The programmer must unlearn
_the procedural programming style that
is so ingrained in anyone with even a
little programming experience. Old pro-
gramming habits are hard to break.
~ Next week I'll ook at examples of ob-
Ject-oriented Programming appli-
cations. i

To learn more about the subject of
these articles, please call The James
Martin Report, an information service
updated quarterly, at (300) 242-1240,
For information on seminars, please
contact (in the United States and Can-
ada) Technology Transfer Institute,
741 10th St., Santa Monica, Calif.
90402 (. 213) 394-8305. In Europe, con-
tact Savant, 2 New St, Carnforth,

Lancs, LA5 9BX United Kingdom
(0524) 734 505,

YT

