Pace 66

APPLICATION DEVELOPMENT

SEPTEMBER 25, 1989

This is the last
in a series of
articles on ob-
Ject-oriented
techniques, a
new technology
that is changing
the way pro-
grammers and
users deal with
— computers.
| Object-oriented
programming
techniques are
becoming gener-
ally available to
brogrammers and are finding use in
such applications as user interfaces,
word processing, graphics programs and
databases.

These techniques haven't made a big
impact on commercial applications,
which usually are slow to embrace the
available technology.

But it’s inevitable that the tremen-
dous productivity gains of object-orient-
ed techniques soon will be applied in
the commercial environment,

The commercial programming applica-

tion backlog has been attacked with
fourth-generation languages, application
generalors, relational databases and ex-
pert systems.

However, information-systems depart-
ments are still unable to keep up with
the demand for newer, more powerful
and more complex applications.

The object-oriented paradigm prom-
ises to be a major step toward reducing
the application backlog, but professional
programmers still need tools if they are
to reap the benefits of object-oriented
techniques.

The languages and applications dis-
cussed in previous articles use memory
Lo store objects. When the program has
stopped running, the objects disappear.
The objects defined are specific to each
program and cannot be used elsewhere
in the system.

But what if the objects were stored
on disks and could be accessed from run
to run? This is exactly what's happen-
ing, and there are a number of such ob-
Ject-oriented databases just coming to
market. They promise to vastly decrease
the work needed to solve certain
problems.

The early users of these object-based
database systems are mostly those in-
volved in computer-aided engineering
(CAE), who face complex data-manage-
ment problems.

The data objects they use are complex
shapes that interact with one another.
These objects can be viewed indepen-
dently or as a group. The CAE tool must
be able to store drawing information, re-
trieve it and manipulate it.

These are all database-management
tasks, but the data does not fit easily
into a relational format. Object-oriented
databases provide a way to deal with
this complexily, just as in the graphics
programs 1 described last week.

Object-oriented databases are also be-
ing used by people building large docu-
ment-handling systems, Again, the prob-
lem is the data model.

The document is mainly text, which

APPLIED INTELLIGENGE

OOP Just the Tickét for Complex Commercial Programs

does not lend itself to being stored in re-
lational records. But in an object-orient-
ed database, the text, sections and head-
ings are all objects. The interrelation-
ships are modeled in the object.?.

While this isn't relevant for simple
word-processing applications, it can be
important for applications that store
large amounts of text, such as those
that keep track of all of IBM's manuals.

Computer-aided software engineering
(CASE) is another area that can benefit
from an object-oriented database. The is-
sue again is complexity. An object-ori-
ented database helps developers to mod-
el the complex objects and relationships
needed in a CASE environment.

normalized relational records that are
stored in the database system.

Note, however, that nowhere in the
database system is the concept of an or-
der defined. :

Instead, the individual relational
records that make up an order are de-
fined. This is very similar to the prob-
lem with the basic paint programs de-
scribed last week, in which the program
had no “knowledge” of the shapes, only
of the individual bits on the screen.

In the conventional approach, after
the programmer has defined the nqrmal-
ized database, it is then time to write
the code that manipulates an order. This
might include a query and an update

TR
Thtee Applications Better Suited |
To Object-Oriented Databases |

Complex interrelationships between data are difﬁckttt
to mandge in a relational Hodel. !

CASE

Graphical symbols and thelr Intéttelation-
Ships that represent software design
are defiried as objects.

Heelment =~
Hahdling Systefs

F-Aided Endifed
Datd objects are complet l |
shapes that interacl. - il

Tekt, $etlions aid headings ake defined a8 objecls.

John Avakian

The object-oriented paradigm promises to be a major step
toward reducing the application backlog, but professional
programmers still need tools if they are to reap its benefits.
et s BT G

The early acceptance of object-orient-
ed databases for applications with se-
vere data-modeling problems indicates
that such systems bring big benefits.

The same techniques can be brought
to bear on commercial applications in
the future. Consider the current way in
which database applications are de-
veloped.

The user of a new system describes
some data object, such as an order, to
the systems analyst or programmer. The
user already views the order as an ob-
Ject with associated behaviors, The pro-
grammer then goes through the pains-
taking process required to break down
the user's concept of an order into the

procedure. The code must take into ac-
count how updates and queries for or-
ders access the various records involved
in the order.

In other words, all of the knowledge
on how to handle an order is stored in
process code and not in the database.

An object-oriented database allows
the complex order object to be built up
from simple forms. The methods for
handling an order are stored in the da-
tabase in the form of properties (data)

and behavior (procedures). The order re-

sponds to queries and update messages,

and so it is an object that can be manip-

lﬂfnled by the system. The user deals
with a familiar object and manipulates

it. The programmer deals with a pro-
;l;tra]l;]llnilr)\g %nrodel that is closer to the us-
er's view of the world.

Other programmers on‘ly need to send
messages to the order object and do not
have to worry about the structur_e o[
the order or the database semantics in-
volved in an update of the order_.

New types of orders could easily be
built from the existing order. For exam-
ple, a purchase order is just like a regu-
lar order, except that it has outside ven-
dor information in it as well.

A manufacturing order has details on
how to satisfy the order on the factory
floor, but the basic structure remains
the same.

A Cure for Complexity

Modern applications are reaching the
limits of complexity imposed by rela-
tional-database technology. .

One mainframe manufacturing appli-
cation’s code handles orders by breaking
them down into approximately 30
record types. The logic for manipulating
the order requires maintaining the se-
mantic integrity of all those records. The
manufacturing order is just one small
part of the system.

No wonder deadlines are missed, and
the size of the application grows out of
control.

An object-oriented database's ap-
proach to the same problem would
bring this complexity into a more man-
ageable form.

The manufacturing order would prob-
ably be a subclass three to four levels
down in the class hierarchy. It would be
abstracted to the point where it was
easy to handle. If a user wanted to cus-
tomize the soltware, the changes could
be localized to the object definition.

Early commercial object-oriented data-
base systems are available on workstation
platforms. Servio-Logic (Por(,land, Ore.),
Ontologic (Billerica, Mass.) and Graphael
(Waltham, Mass.) are three vendors of
object-oriented database systems.

The first system is based on Smalltalk,
an application-development tool made
by Digitalk Inc. The other two systems
are based on object-oriented C exten-
sions; in these, the user defines the data-
base as objects in C. When the system
runs, the objects are stored on disk.

These object-oriented extensions are
called persistent object languages to dis-
tinguish them from the pure languages
from which they were derived. They
also handle such standard database ac-
tivities as storing and accessing data.

Next week I'll begin a series of arti-
cles on the recently announced IBM re-
posillnry, a significant component of
IBM's application-development strategy
for the 1990s. m

To learn more about the subject of
these articles, please call The James
Martin Report, an information service
updated quarterly, at (800) 242-1240.
For information on seminars, please
contact (in the United States and Can-
ada) Technology Transfer Institute,
741 10th St Santa Monica,,Calif.
90402 (213) 394-8305. In Europe, con-
tact Savant, 2 New St,, Carnforth,
Lancs, LA5 9BX United Kingdom
(0524) 734 505.

