Pace 70

JANUARY 15, 1990

This is the
JSourth in a se-
ries of articles
on rapid appli-
cation develop-
ment (RAD), a
methodology de-
stgned to be
much faster
than traditional
‘methods.

Improved ap-

plications-devel-
opment life cy-
cles are urgently
needed to devel-
op strategic applications more quickly,
as well as to deal with the growing
backlog of applications waiting to be de-
veloped. Information systems need to be
retogled with techniques that can devel-
op applications in months rather than
years, days rather than weeks.
0\ The RAD life cycle addresses these
3 \ concerns through a combination of high-
Wl ly focused management techniques and
advanced applications-development
technology. Unlike more conventional
bR development life cycles, RAD empha-

: sizes the use of small, highly motivated
teams of users and information-systems
il (IS) professionals, as well as extensive
i \ use of interactive, joint application-de-

|

!

sign techniques. Applications develop-
ment is performed in an iterative man-

! ner using integrated computer-aided
software engineering (CASE) tools capa-
ble of generating code for complete ap-
plications.

The success of the RAD life cycle de-
pends greatly on the use of automated
tools. Organizations that have achieved
high productivity with RAD typically
use tool sets, such as integrated CASE
(I-CASE) tools, to rapidly build applica-
tions within an automated life cycle.

These integrated tools, developed in
the late 1980s, permit entire applica-
tions to be specified on the desktop.
Fully integrated CASE products provide
a complete software-development envi-

ronment that supports the entire life-cy-
cle process.

A variety of tools—both simple and
complex—have been created to help
make IS development faster, cheaper
and of higher quality.

Simple tools should be used to build
simple systems—a complex tool may
slow its development. (For some needs,
a report generator or a spreadsheet tool
is sufficient.) Most systems developed
with RAD techniques, however, are like-
Iy to be complex and will require so-

phisticated tools,

In the early 1980s, fourth-generation
languages were invented. Non-procedural
languages made it possible to express the
required result, rather than simply the
way 1o achieve it. Structured Query Lan-
guage (SQL), which provides a non-proce-
dural way to access relational databases,
became a standard. And other, more
user-friendly query languages and report-
generation languages proliferated,

I’r(».ln(yplng tools became important,
enabling developers to build prototypes

quickly and see how users reacted to
them. P

iterativ

e development in which a proto-

Totolyping languages gave rise to

Use of Automated Tools Crucial to RAD Life-Cycle Success

type was successively refined. CASE
tools provided graphically oriented ways
of expressing models and designs. Code
generators, which could generate COBOL
or other languages from high-level con-
structs, were also created.

Recently, these tools have been com-
bined into powerful, integrated facilities.
CASE tools for planning, data modeling,
analysis and design were integrated
with code generators. Prototyping capa-
bility was linked into the design tools.
And non-procedural languages, including
SQL and report generators, were inte-
grated into the CASE environment.

The most important feature of -CASE
is the ability to generate code directly

tory typically stores enterprise models,
data models and process models that
are to be standard design components
across the organization. *

The developers, who can be miles
from the mainframe, connected to it by
telephone lines, download a subset of
the central repository design informa-
tion into their local project-level reposi-
tory, where it is accessible via the LAN
file server to all members of the design
team.

Individual members of the team can
then transfer this information to their
desktop machine and work with it local-
ly. A desktop design analyzer checks the
integrity of what is built.

bistributed Developtent Environen

" BASE ool afi 17
& pareonal Repesltary
: zﬂbll@ﬁ li!ﬂ

Broject-Level Repository

¥

ok [

N Iy
Corporate Repository
- Enterprise Modeld
+ Data Models i
+ Process Models t

John Avakian

Simple tools should be used to build simple systems. Most
systems developed with RAD techniques, however, are
likely to be complex and will require sophisticated tools.

from the CASE design tool.

The figure shows a typical distributed
I-CASE environment. Members of a
project design team usually work within
a LAN. Each member has on his or her
desk an I-CASE tool set with its owh re-
pository and design analyzer. With the
desktop tools, they can do planning,
analysis, design and code generation.

Consolidation and analysis of specifi-
cations across the project is performed
using a project-level repository that typ-
ically resides on a file server within the
LAN serving the project.

In addition, there may be a central
corporate repository, which is usually
on a mainframe. The corporate reposi-

Periodically, the changes made to the
subset are sent back to the project-level
reposiwry, where they are consolidated
with specifications from other members
of the design team, under project-man-
agement control. A design analyzer then

do uncoupled tools. The integrated tool

set is the basis for RAD.

In advanced I-CASE tools, all of the
functions associated with planning, anal-
ysis, design, consolidation of specification,
analysis of specifications, code genera-
tion, database generation, documentation
generation and project manage!nem, can
be performed within a LAN using a net-
work of desktop computers. :

No longer is there any need to inter-
act with a remote mainframe computer,
except to access shared, corporate-level
design specifications.

Formerly, code generators for I-.CASE
tools were located on a mainframe;
now they are rapidly moving to PCs.
Today’s PCs are powerful enough for
complete development, code generation
and compiling of programs that eventu-
ally will be executed on a designated
host computer.

Using I-CASE tools with desktop code
generators is generally faster than
accessing a mainframe for code genera-
tion and corhpiling.

A developer should be able to design
a system (or subsystem), generate code
for it, test it, modify it and regenerate it
as quickly as possible. In addition, he or
she should be able to do this on a desk-
top machine, completely debugging the
logic on that machine and generating
the linkages to the mainframe

databases, the network and the operat-
ing system.

Once fully tested on the PC, the code
is handed over for execution and testing
on the host machine on which it will
eventually run.

Complexity Calls for I-CASE

The more complex the project, the
greater the need for I-CASE tools. As
the complexity of a project increases,
the gain in productivity, relative to the
traditional COBOL life cycle, also in-
creases. Complex projects have many
components that need to be integrated;
thus, the integrating capability of the re-
pository and design analyzer becomes
especially important.

The key to building complex systems
is to have small, autonomous teams
working simultaneously with powerful I-
CASE tools, their work coordinated with
a model that is in the common I-CASE
repository.

People who have learned to manage
the RAD life cycles with I-CASE tools
look back on the earlier methodologies
with horror. Quality systems simply
cannot be built quickly with the tradi-
tional methods.

The components of integrated CASE
tools used with the RAD life-cycle pro-
cess will be discussed in more detail in
next week’s column. B

The concepts embodied in RAD are de-

goes to work on the consolidated specifi-

cations, detecting any discrepancies
among the different analysts' work.

A critical characteristic of an I-CASE
tool (as opposed to a CASE tool) is its
:X)l!:)tdy to generdte executable programs.

code generator is driven by the desi,
workbench. el 2

The tight integration of the analysis
and design tools with the code generator

* results in much higher productivity than

scribed in a new volume in the James
Martin Report Series. For more infor-
mation on this volume, call (800) 242-
1240. For information on seminars,
contact (in the United States and Can-
ada ) Technology Transfer Institute,
741 10th St, Santa Monica, Calif.
90402 (213) 394-8305. In Europe, con-
tact Savant, 2 New St., Carnforth,
Lancs., LA5 9BX United Kingdom

(0524) 734 505.




