Pace 60

PC WEEK\APPLICATION DEVELOPMENT

APRL 16, 1990

Powerful new
concepts and
techniques are
becoming avail-
able to migrate
the billions of
lines of existing
code into more
easily expand-
able, maintain-
able systems.

In most enter-
prises, computing
systems have
large quantities
of old code, most
built by hand in an unstructured fash-
jon. The data usually has not been mod-
eled, with little or no interest in achiev-
ing data compatibility between different
systems.

These systems typically were designed
before today’s principles of good data-
base design were understood. The data
isn’'t normalized and is unrelated to the
data-administration process. As caretak-
ers of these systems know all too well,
these systems are fragile and expensive
to maintain. ¥

Traditional maintenance of programs
is an unsatisfactory and expensive pro- °
cess. It has been compared with the at-

tempt to repair a wooden boat at sea:
New planks can be replaced only by us-
ing existing planks for support. The pro-
cess must be done in small steps or the
boat will sink. And sooner or later, the
boat must be brought to a shipyard and
rebuilt.

Using computer-aided software engi-
neering (CASE) tools, old systers can
be rebuilt from restructured design in-
formation stored in the CASE reposi-
tory. They can't all be rebuilt quickly,
because this would involve too much
work. The best that can be hoped for is

a steady, one-at-a-time migration of the

old systems into the cleanly engineered
form.

In corporations that have successfully
implemented development methodolo-
gies based on integrated CASE (I-CASE)
tools, these are two development worlds.
The 1-CASE world has the ability to
evolve systems, continually improving
their design and regenerating code. The
systems are cleanly engineered, easy to
change and have stable data models.

Alas, there is also an underworld of
poorly structured old systems lacking
data models. In many corporations,
more programmers spend their time
maintaining poor-quality code than
those who work in the I-CASE world.

The problem is rather like the slum-
clearance problem in a city. Despite a
city’s new center, elegant architecture
and efficient street plan, existing slums
and old, crumbling buildings still need to
be maintained. Planners hope for a
steady migration from the slums and
their replacement with well-designed,
new facilities.

Many corporations have attempted a
major conversion of a file system to a
database system and have failed. Usual-
ly, the reason is that the project con-
sumes much more work than anticipat-
ed because so much has to be re-

Reverse-Engineering Gives Old Systems New Lease on Life

programmed.

Often, the attempt to convert is killed
by the people controlling information-
systems (1S) finances. The conversion
process itself creates no new applica-
tions. Management perceives a great
deal of effort and expense with nothing
to show for it. There is a long and seri-
ous application backlog.

In one organization after another, in-
cluding some of the most prestigious
data-processing organizations, the at-
tempt to make a major conversion has
failed. Yet the cost of maintenance in
the non-I-CASE world escalates daily.

One of America’s best telephone
switches ran into so many software-

process. The programs are captured
and represented in a CASE format so

they can then be modified as required .

using CASE tools. Data definitions are
captured and converted into stable

data models stored in the CASE repos-

itory. :

The figure shows a reverse-engineer-
ing step. The code of the old system is
restructured with an automated tool
and entered into an -CASE tool so it
can be analyzed and redesigned, and be-
come part of the -CASE evolutionary
life cycle. :

In connection with this reverse-engl-
neering step, three terms are used:

Restructuring: conversion (with an

How To Reverse-Engineer Existing Systems

Old Systems Can Be Rebuilt Using Restructured Design
Specifications Stored in the CASE Repository

Old systems riddled
with undocu-
mented and
unstruc-

tured

code

7 0Old code is
s restructured with an
automated tool and entered into

an integrated-CASE tool where it'is analyzed and redesigned.

New

systems

based on

an integrated-
CASE life cycle

ode
rate ©
\\:‘eoma‘\ca\\‘l

Ge!
al

! Jon Avakian

In one organization after another, the attempt
to convert to a database system has failed. Yet the
cost of maintaining old systems escalates daily.

maintenance difficulties that its mainte-

nance costs exceeded $1 million per day.

The switch would never have been built
- if that figure had been forecast.

A recent study by the US. Air Force
estimated that unless maintenance pro-
ductivity is improved by the year 2000,
25 percent of the US. draft-age popula-
tion will be required to maintain the Air
Force's software!

Fortunately, new tool sets to facili-
tate the complex process of rebuilding
systems are available, The goal is to re-
verse-engineer old systems into a
cleanly structured form, using tools
that automate the tedious parts of this

automated tool) of unstructured code
into fully structured code.

Reverse-engineering: conversion of un-
structured code into high-level design
specifications and (automatic) entry of
these specifications into an I-CASE tool
where they can be improved or re-
designed.

Re-engineering: modification of the de-
sign of a system, adding functionality
where required, and (automated) pro-
duction of code for the improved
system.

If reverse-engineering is done as
shown in the figure, old systems can be
rebuilt as evolutionary systems. Eventu-

ally, the messy underworld should dis-
appear.

There are basically three approaches
to the IS reverse-engineering and re-engi-
neering problem:

@ Do Not Convert. Allow applications
to continue their existence unconverted
but, when necessary, build a bridge to
new systems using data models and pro-
cess models stored in a CASE repository.
® Restructure. Quickly restructure the
messy applications (preferably with
automated tools), but don’t rebuild them
with CASE tools. The slum areas are im-
proved, but not rebuilt to be part of the
new planning. Often it’s necessary to
build a bridge to the new systems built
with CASE tools.
® Rebuild. Reverse-engineer the old ap-
plications to conform to the data models
and process models stored in the CASE
repository. This is comparable to rede-
signing and rebuilding areas of the city.
In large IS installations, a mix of these
approaches will probably be used.

To Convert or Not

Two questions should be considered
before deciding to convert an old sys-
tem. First, does it work? If it works
well, there’s a strong argument for leav-
ing it alone. If it works inadequately, it
should be rebuilt using integrated CASE
technology. Second, does it incur high
maintenance costs? If the application is
fragile and expensive to maintain, then
it'’s a candidate for restructuring or re-
building with automated tools.

It may be appropriate to automatical-
ly restructure an old system and modify
it by programming rather than rebuild
it with reverse-engineering and I-CASE
tools. If an application system works ad-
equately and needs little maintenance,
then its conversion should probably be
postponed. Spend the effort on some-
thing else; there are so many other ap-
plications needed, such as a bridge be-
tween it and the new environment.

In planning data resources, it may be
unwise to assume that old systems will
be converted easily to the new, automat-
ed form. A realistic appraisal is needed
of the costs and difficulties of conver-
sion. The dismal history of uncompleted
conversions should be weighed.

In their initial enthusiasm for new de-
velopment methodologies, system design-
ers often assume that the old systems
will be converted and discover too late
that they won't. It's safer to assume
that_ many old systems will survive and
plan a bridge that links them to the new
world.

Next week I will examine the chal-
lenge facing vendors in building tools
that support reverse-engineering. i

The concepts embodied in reverse-engi-
neering are described in the CASE vol-
ume in The James Martin Report Se-
ries. For more information on this vol-
ume, call (800) 242-1240. For
information on seminars, contact (in
the United States and Canada) Tech-
nology Transfer Institute, 741 10th St.,
Santa Monica, Calif. 90402 (213) 394
8305. In Europe, contact Savant, 2
New St, Carnforth, Lancs., LA5 9BX
United Kingdom (0524) 734 505.

