PC WEEK\APPLICATI

ON DEVELOPMENT

May 7, 19%0

Restructuring CodeIsaSou

Among the
most urgent is-
sues in the CASE
industry today is
the need to devel-
op better tools
for restructuring,
re-engineering
and reverse-engi-
neering existing
applications code
into more easily
expandable,
maintainable
systems.

As outlined in
previous columns, restructuring involves
automatically converting unstructured
source code into structured code; re-engi-
neering is used to standardize data defi-
nitions, remove redundancies and anom-
alies in existing systems, and
reimplement the application in a new
form; and reverse-engineering is con-
cerned with extracting high-level specifi-

cations from existing code in the form
of data and process models.

Most computer-aided software engi-
neering (CASE) tools currently don’t
provide facilities to restructure or re-en-
gineer existing code; they are focused on
automating the production of new appli-
cations. However, as much as 80 percent
of the pro ing effort in many in-
formation-systems 5]5) organizations is
directed toward the enhancement of ex-
isting applications. '

Tackling a Thorny Task
Forward-engineering from graphical
design specifications using a convention-
al CASE tool is much simpler to enact
than true reverse-engineering, which de-

mands the extraction of specifications
from existing systems. For instance,
more than 200 CASE vendors support
the conventional forward-engineering
process, although very few vendors
have tackled the thorny task of reverse-
engineering existing applications. In fact,
no vendor has yet solved this problem
for both the data and process sides of
an application. t

Organizations are beginning to recog-
nize the increasing importance of pre-
serving the value of past software in-
vestment through re-engineering the ex-
isting software base. Many organizations
have 10 million to 20 million lines of
code that must be maintained and en-
hanced for many more years; replacing
this large body of code using only for-
ward-engineering techniques is impracti:
cal at best.

The restructuring of existing code is
one of the simplest methods available to
reduce the cost of maintenance. Using
products such as Language Technology
!nc.'s Recoder or IBM's COBOL Structur-
ing Facility permits existing unstruc-
tured COBOL programs to be restruc-
tured automatically.

As shown in the figure, these pro-
grams take spaghetti-code input and
produce cleanly structured code and
documentation as output. The resulting

structured programs are identical in
functionality to the original unstruc-
tured programs; however, the structured

APPLIED INTELLIGENGE

code is typically 20 percent to 25 per-
cent less expensive to maintain.

In operation, the restructuring tool ex-
ecutes a complex algorithm to aummatl-
cally structure the spaghetti code. First,
it reduces the program to an abstract,
control-flow design. This design is then
analyzed and redesigned to achieve a
cleanly structured control graph, which
is then run through a COBOL generator
to reimplement the structured design.

Documentation is produced in the form

of structure charts, control-flow dia-
grams and reports on problem areas in
the code, such as unreachable code, end-
less loops and poor structure.
Specialized versions of these products

tenance costs substantially by using
automated tools to analyze its portfolio
of COBOL programs, identify poquy
structured routines and automat)_cally
restructure these programs. Metrics
tools provide an objective evaluation of
the complexity and quality of each pro-
gram module.

As illustrated in the figure, the re-
structuring process does not extract
specifications from the restructured
code; it stops short of making control-
flow information accessible to the pro-
grammer. :

Some restructuring tools do provide
interactive access to the control-flow di-
agrams produced as part of the restruc-

Restructuring and Reverse Engineering
Of Software Processes

Multiple Vendors Support R

estructuring of Process Code;

No Vendor Yet Supports Its Complete Reverse Engineering

Unstructured code

PR Sy L

Restructuring

Restructuring
engine

Extracted
specifications

(Process
model)

Reverse engineering ",

Restructured Redesigned code
code and documentation

St

(Process
model)

Repository

« Goals + Report designs
« Screen designs
* Strategies

« Data models
« Specifications

+ Process models

*Rules ¢ Data structures

+ Program structures

Jotn Avakian

Or"ganizations are beginning to recognize the increasing
. importance of preserving the value of past software
investment through re-engineering the existing software base.

are available to restructure IBM's Cus-
tomer Information Control System pro-
gram (CICS) commands, such as the
Handle construct, which can cause hid-
den control-flow jumps whenever a par-
ticular type of error occurs. To provide
an objective measurement of the quality
of the code, additional tools such as the
Inspector from Language Technology
can be used to apply structure and com-
plexity metrics to existing code.
Organizations such as the Hartford In-

surance Group of Hartford, Conn., have
used restructuring and metrics tools in
support of an applications-maintenance
center. The company has reduced main-

turing process. These tools, among them
a new product called Chrysalis from
L'f_mguage Technology and the
Via/Center product set from Viasoft
Inc, extract control-flow information
f}'om the code and make this informa-
tion available to programmers on line.

Using this information, programmers
can evaluate the structure and organiza-
tion of the program, how control is
passed between modules and how logic
and data flow through the program. The
programmer can use this information to
enhance and maintain the program at
the structure-chart level.

As shown in the figure, a desirable

nd Investment in the Future

next step in the extraction of _control in-
formation from existing code is to pro-
duce higher-level control abstr:':lctlons,
such as design tables, action diagrams
and data-flow diagrams. The ultimate ob-
jective is to support reve:s_eeng.meelfmg
by extracting process specifications in
the form of process models that are inde-
pendent of the implementation environ-
ment. These process specifications can
then be combined with high-level data
models, which are stored in the reposi-
tory of a CASE tool, and then enhanced
at the design level and reimplemented in
any supported environment.

1t is desirable to build systems that
will be easy to change in the future. A
major goal of software engineering is to
make systems easy to enhance and
maintain. Applications built today
should be fully based on normalized
data models in a CASE repository.

To design systems that will ease fu-
ture enhancement and migration, the
following techniques are recommended:
® Use CASE tools for planning, analysis,
design and construction.
® Use a code generator driven by the
CASE design tools.

@ Adhere to the principles and prac-
tices of information engineering.

® Create procedure designs that are in-
dependent of technology, which is likely
to change.

® Employ a code generator that can
translate the designs into implementa-
tions with different technology (for ex-
ample, a tool that can generate code
and data descriptions for different data-
base environments).

@ Use fully normalized data models.

® Use fully structured code built with
an action-diagram editor that is part of
a CASE environment.

® Use a relational database whenever
possible.

® Use application standards such as
IBM's Systems Application Architecture.
® Use a database-management system
with field independence and features
that enable changes to be made without
rewriting existing programs.

® Avoid unusual hardware, operating
systers or facilities that could make fu-
ture migration difficult.

® Plan to do future maintenance by re-
generation.

® Make upper-level management fully
aware of the business reasons for using
software-engineering techniques and
automation in applications development.

Next week begins a series of articles
on key industry trends in computer
hardware, software, database environ-
ment, communications and methodolo-
gies that are having a profound impact
on the computer industry. 8

The concepts embodied in reverse-engi-
neering are described in the CASE
volu.me in The James Martin Report
Series. For more information on this
volume, call (800) 242-1240. For in-
Jormation on seminars, contact (in the
United States and Canada) Technology
’I‘ran_sfer Institute, 741 10th St.,, Santa
Monica, Calif. 90402 (213) 394-8305.
In Europe, contact Savant, 2 New St.,
Cq.mfmh, Lancs.,, LA5 9BX United
Kingdom (0524) 734 505.

|

