This is Part 6
of a series of

PG WEEK\APPLICATION DEVELOPMENT

APPLIED INTELLIGENGE

tool that provides an easy way to imple-
ment event-driven interfaces for certain

classes of applications. kFor example, the

articles on

IBM's Systems
Applichtion Ar-
chitecture
(SAA). The in-
troduction of in-
tegrated comput-
ing environ-
ments such as
SAA will have a

it

{1
| '!'-7*{ @ on the software

W technologies of
the '90s.

A chiefl benefit of integrated comput-
ing environments such as IBM's SAA is
the provision of a standard user inter-
face that makes all applications appear
to behave in a consistent and familiar
manner. The SAA component that gov-
erns the user interface is called Com-
mon User Access (CUA), which is based
on the interface developed at Xerox

Palo Alto Research Laboratories and
popularized by the Apple Computer Inc.
Macintosh.

CUA supports text-only functions ap-
propriate for a non-programmable ter-
minal and graphically oriented functions
designed for a programmable worksta-
tion. With a workstation, the user has
windows open for different applications
or different parts of the same applica-
tion. Menu bars with associated pull-
down menus provide access to the vari-
ous functions.

Users are in complete control of the
interface. A mouse can be used to select
a window or to move to another part of
the screen. Users might open a new win-
dow or close an old one. Scroll bars
might be used to access material that is
too large to fit within the view dis-
played in the window.

Tﬁhiﬂ type of graphically oriented in-
lerface has proven comfortable for users
and is easy to learn. It is based on the
metaphor of the desktop: The user se-
lects objects on the on-sereen desktop
and manipulates them in a consistent,

manner. Consistency means that seroll-
::‘ut :;[‘rn{uh?n and wind?w I_’Ilﬂlli[}lﬂ&tiﬁl‘l

\¢ same for all applications. The
menus and maltiple windows vastly re-
duce—and can even climinate—the
need for the user to learn any command
synlax or to study complex documenta-

Uon. There are no differing “modes” of

operation with conlusing behaviors. The

user can move anywhere in the inter-
face at any time.

Although this Lype of interface is de-

sirable, programmers need o master not

only a new set of tools but also a com-
pletely different inanner of designing
anfl hui‘hling applications, The event.
(Il!#‘t‘}l Interfaces required to respond to
USCr interaction are not only unfamiliar

1O most prog
: ammers, they are alse
hard to write. ‘ / -

IBM is altacking the
Lwo programmin
User interfaces.

L . et . . »

,.“"' I resentation interface
Brammers too] for building a full event-

(

The Dialog interface

problem with
lacilities for building

Is the pro-

1S a high-leve)

Dialog interface makes it easy to Qevel-
op transaction-processing applications
that give the user filled-n} forms for
gathering data to maintain a dat:'a.base.
It could not be used for applications
that require more intensive user interac-
tion, such as text processing, or for ap-
plications that require high-speed graph-
ic interaction.

The main strength of Presentation
Manager's interface is the freedom it
gives the user to control the interface to
applications. The interaction might be ap-
plication-specific, such as entering re-

a dialogue with the user. The dialogues
are scattered throughout the application.

Presentation Manager requires that |
user 1/0 be the highest organizing princi-
ple, with subservient application func-
tions. In conventional applications, the
function is considered to be the highest
organizing principle.

When function comes first, the user is
at the mercy of the application and is
forced to respond with a specialized
command syntax that is unique to the
program. The user can do only what is
allowed by the application at that point.
In general, the user often develops a
helpless, anti-computer, frustrated fecl

Ing.

A Sirigle Window to SAA's World

Interface Provides Cotiton User

Access to All SAA
Application

" g - Pl e n-k
e ?ﬁ'?“‘r T
5 - = h SR PLLEN " = hUn, T80 i el
T T i ““1 m- i e, R

14,4 1 k¥ i T %, ol -
> _|| 1_;.._..-. .I'-_ _{r-'l. .':.-_._ll_,.'i." - 5 e T i -+ ’ k Sl I.l‘ I
B L B et -Hﬁ’-’,ﬁ."‘gﬁ-@."’t’?;-’ 2
o T i "ﬂ'.L e . Wy s : _l‘-" -. _dr" .-i'

II-'|“ o fi LR

—— F":".-.'

— ¥, >

e O R S "
7 ¥ '..;I'r!,.;-',-.;il_ﬁ.;'ﬁi-,gii.lr e o =
s Lt . rl W .._“‘_._ T rk Al - L -, sl
et TG W LT gl T i e A AR Y P e i, T
A Rl 3:"-}-* RAES R fh i 1.@?4““"

X £ . m A e ® N B R e BRI [F e Liih '
L YRR BRI e o | e N el L T e e)
I - # . oty "H'." i _"' i - { " .I-;'Il" ks ! 'r: | Ir_._. I:|.'|.I- .
:- o | ,-' & ..‘,.1' -f rETT AEIT 'I‘I-q'.-l"'" ! .rr'. ;
- : e LN A R e
" . B e F 1
CRLAL L . el - 1 - e KLl
LFi il e . :] .
il

W
¥

Il] o g ' - W 4
- -r-hlli'lr- 45 . g P e T
e Ak e S Viog
B g) GRERE (| 4.

. %
it

hr %\

‘. L
'. = J.

. _1‘5.5
o T AR E gl
‘.'.-.. = | e) B o f l‘.
I iy g ..J_‘I-'.":.L-‘.I,-'I\"f 1: _:Iﬁf Il-r'.;!::':f_? ?#l{i "i"':_ il i T .
St I A A e R iR an) R
it g & 1T L T A A, I % !
LY i “; L T e b | Yxg r-&h':-.“"' :';; { v i W £y =
W Ly L lil i P T ST " L Fpel 5 e |) K

g

‘. -
R P
B i
#hd
"I o
)
e
L

quested information, or it mj

system level, such as when moving win-
dorx?rs or initiating another application
Ihp main difficulty in developing ﬁn
application controlled by Presentation
Manager is providing the intelligence to
deal }vilh all possible user actions
‘I_JHlllg the Presentation interfacn;, the
!nglwsl level of organization in lhe]I user-
Interface program is the dispateh loo 2
:.:ml re(itl)gnlizm certain user actions aﬂd
nen calls the appropri
sl Ppropriate modules for
This is in sharp contrast to convention-
a.l_applimllnns that are organized by a
plication function. When a function h:lt:ap
Lo communicate with the user, it initiates

ght occur at

Programmers are very happy with the

concept of function first, because the

logic of the program is cleanly laid out

in the application. While the user might

be unhappy, the '
. appy, programmer is satisfie
with the logical structure, i

When user interaction comes [irst, the

?\Tl:r? auitud'es are completely different
Lthe functions of the machine are al-

and the user decides

more productive users
No matter how

AUGUST 14, 1989

cult to decide whether to make an in-
vestment in training to use Presentation

Manager. Although the benefits to users
are demonstrable, it is not clear if these

by SAA n
B i Sl e D
1o

benefits are worth the cost in training

and development. _
Not only is it difficult to build appli-
cations with Presentation Manager, but
due to the fundamental reorganization
of application logic, converting existing
applications to a Presentation interface
may also be difficult. The real power of
the Presentation interface is available
only in C, so programmers must learn

that language as well.

The difficulties inherent in converting
to a Presentation interface are not ap-
pealing to large, conventional COBOL
programming organizations; however,
for those organizations willing to make
the commitment, there are tremendous
advantages.

The easiest way to bring this new
technology into conventional organiza-
tions is through the use of higher-level
tools. A laver of development software
must be built that lets programmers
concentrate on the application logic, not
the user interface. The tools should

automatically build ithe interface for the
application.

Dialog Interface: A First Step

The Dialog interface, built atop the
Presentation interface, is a first step in
that direction. As with all high-level pro-
gramming tools, it automates the devel-
opment. process for :1 restricted class of
applications.

The programmer specifies, in a4 non-
procedural manner. ihe attributes of a
dialogue, such as menu entries and
fields in @« form. The dialogues are com-
piled separately. The programmer sim-
ply calls them when needed. The Dialog
Manager run-time svstem handles all of
the top-level control necessary for deliv-
ering an event-driven user interface.

The programmer nses a1 conventional
development style that maintains pPro-
gram lunction as the highest organizing
princ_iple. When communication with the
uscr 1s required, the 1 ialog Manager is
called with the name of the dialogue.

l_Jse of the Dialog Manager still re-
quires some redesign of an application.
A conventional full-screen application
requires the user to 1ip from panel to
ipamel. In 2 windowing environment, this

rate functions (:al. I;-“l‘n[x_}sed (ll: o
multiple alvl)li("ili:)n? lrf}tter. delfsngned 7
Alcalions, each in its own

window, operatip 1thi
_ . g within a wo '
environment. e

Next week, I'l desceribe t

' he applica-
titm-gonvmlmn] L

wironment provided

learn more about the subject of
. ‘all The .James

Monica, Calif:

munication 90402 (213) 394-8:
tion is a healzleatgfee—ﬂn ﬁ;ra;:g: ?]lmlit a tact Savant, 2 I\fo.;?}gf g;?ﬁ?lz}ggz, e
Ol" r | L& UHC[‘ m , ~ A x ’ : ’

or the programmer. It is often diffi- (0;!5_';) ?3‘4’ 5?(;?5‘\, United K ingdom

