Pace 76

APPLIED INTELLIGENCE |

SEPTEMBER 11, 1989

0OP Goes Beyond the Commonsense Meaning of ‘Object’

The behaviors for responding to the to tl?e specific. qu examp]n,- |
This is the sec- message depend on the valqes of the the mventoryfo:)dec}l;iz?;g: ym mtil;ﬁtﬁge
ond in a series variables of a particular object. ure, the to;:: Ob' et et S R
of articles on ob- Object-oriented programming tech: the abstract o Jel(;e , of etasas Ak
ject-oriented niques are used to involie tg;le beh?rwors z[;q‘r;%sd tznai 11;];:12 5 [I;d “retlli}1{1 I
echniques, a in an object. For example, the veriiica- | .
ZSIL te%h nology tion message to an order object would It is a general-pu“rp«:)ts?l p;‘g%;*gel;rlunmg
that's changing invoke an order behavior that would construct tl]at }Ilmgh] a Tt
the way pro- send a message to an inventory object predefined in the sys ?mﬁb Hiegsil
grammers and requesting the quantif)y 01t1 hauz}g t:0r the Ia)slret gé'd ae programmer s library
with item. The inventory object could, in : | _ _
gjﬁ:;zm turn, send messages to other objects to The programmer unplem?ntmg tI:“he In-
When we think obtain the quantity on hand. ventory object hierarchy might define
of the term “ob- The benefit of this approach is in- categories of parts (such as Type A ;
ject,” we have an creasingly important as systems get part, Type B part, and so on) as a sub-

what that menting the order object do not need to tory is a collection of different types of
means. In our everyday world, objects
have both properties and behaviors: An

(I;:'g]lil has shape and size; it can bake and The H'él’amhlca' Arra“gement of Ol'jjectg _
An object in a program also has prop- Pﬂjpérties, hihé"”éd ﬁ'ﬂm pﬁf'ent Ubjebts, bebiumb ;:-' .'

erties and behaviors. For example, an d gV § S A A ¥
order form in a business application has more specifit for edeh subordihate part. M
properties such as items and quantity : i
ordered, as well as behaviors such as

TG e Y SR P ! b - | \/ 7 1, E:F': !' f i s
process and verify. n ﬁh wgﬂt? °ﬂiﬁ§§5’eg (e WE" .
It's easy to see how object-oriented el dali I @ Mok bild, |
programming can be used to describe I B R I | " Chec ?ﬂ“f%. try.
. v Sk { i |

environments in which a data-modeling
language defines objects and relation-
ships. In fact, object-oriented technology
originated with languages designed for
simulation and is thriving in graphics
applications where the user manipulates
objects on the screen. However, the for-
mal term “object” has meaning beyond Hsord
the commonsense meaning of the word. pelq A e£

The programmer’s objects can repre- el
sent physical entities such as inventory '
items, but they can also represent more
abstract entities such as stacks, num-
bers, file-browsers, dispatchers or col-
lections.

Because it contains both data (proper-
ties) and procedures (behaviors), a pro-
gramming object can be used to
“modularize” any programming concept.
Examples include collections, which are
objects made up of other objects, and
browsers, which are procedures for ex-
amining files.

The properties of an object can't be
directly accessed from outside the ob-
Ject. They are only manipulated by the
behaviors of the object. The behaviors of
an object can only be invoked by send-
Ing messages to the object. The imple-
lnentation of the properties and
behaviors of an object is completely hid-
den from the outside. The object’s data
and processes are encapsulated within
the object. |

To illustrate this, let's look at portions
of a simple customer order-entry appli-
cation. The system has an ob ject—the
order—which has behaviors that allow
manipulation and inspection of its prop-

clrt.im. The definition might look like
this;

Ohject ¢

|
|

!

BUED |l
o o i B T |

know anything about the internal work-

ings of the inventory object. They sim- | :
ply have to know whick. messaggs e gory of parts can themselves be objects,

items. The inventory items in each cate-

_ _ _ such as screw or bolt. The invento
it el A "I';';';C;ag;' Fespona fo and fect inhell;its all the behaviors of the c{zrtl):
2 . SN €clion object and category obic

ass: order; property variables: “In a?dmm’ object-oriented languages that with no furthertxigurlicy rroflc't;i o
st i ' | y rariables: allow information to be organized con- grammer the cod gl nhis
e I n: quantity; behaviors: veri- ceptually. The object definitions are or- ventory jte 3 S had or delete In:
Yy process, back-order, add. ganized in a class hierarchy, as shown in ML

An important distinction needs to bhe
| the fi : ass
made between a class of objects and BS; A cinss above an object is its

7 : superclass, and the one below is a sub. "

particular objects. The definition of tJ ass ' o reorder.” Each of t}
e o - @ class. Objec aSSeS e

class of object “order” contains defini- R by subg GAh tnhgrit

tic | : any or all of the properties and

I,i:::l:r UI"? property variables. Each par- behaviors of the classes above. eneral chec

it "‘ object contains just the values The programmer working with an ob- - check-reorder behaviors from

Sﬂ;{{'iqlﬁ rvarll:lhlt's of that (fl;joct,, Mes- ject-oriented language defines classes of
+ e sent o the particular object. objects ranging from the general down from other

B — —

intuitive grasp of large and complex. Programmers imple- class of the collection because the inven-

in designing which sends the same check reorder

message to all inventory type objects.
The ability of objects to respond to the
same message and each implement it ap-
propriately is called polymorp_m.sm. It is
one of the aspects of object-oriented pro-
gramming that simplifies complex code.

To better understand polymorphism,
let's look at the inventory object. One of
its behaviors checks all inventory fm:
iterns that might need reordering. It is
simple to make a loop that sends l:he*
check-reorder message to each of the in-
ventory items in the collection. The code

might look like this:

global-check-reorder :

doi= 1 toend

check-reorder — > inventory-item(i)

This has tremendous implications for
program maintainability. As new item
types are added to the inventory and
new procedures for checking reorders
are implemented, the code for the inven-
tory object never needs to be changed.
This is unlike a conventional application
that would need to dispatch the correct
reorder procedure for each inventory

type.
Fine-Tuned Inventory Control

In this example, polymorphism, cou-
pled with both the inheritance of reor-
der policies for standard parts and the

ability to customize and override the
standard policies for particular parts, al-
lows an organization to program more
complexity in the reordering logic of a
manufacturing application, thus giving
it more finely tuned inventory control
and a significant competitive advantage.

A number of languages are available
for programmers interested in experi-
menting with object-oriented program-
ming. The oldest and perhaps the purest
is Smalltalk, which has some excellent
Implementations on small machines. The
system enforces object-oriented pro-
gramming throughout and is an excel-
lent tool for learning pure object-orient-
ed programming.

A different approach is to enhance
existing languages with ob ject-oriented
capabilities. This is the approach taken
by C++ and Objective-C. which are
both C extensions, as well as Flavors, |
which is a LISP extension. While this
approach provides the familiarity of a
conventional language, it has the disad-

vantage of not forcing the programmer
to use object-oriented techniques consis-

tently. The programmer must unlearn

the p}'ocedural programming style that

[s SO Ingrained in anyone with even a

little programming experience. Old pro- |
gramming habits are hard to break.

. Nex_t week I'll look at examples of ob-

e

g
~
=
-~
S
=
n
3
3

updated quarterly, at (800) 2421240
For mfm:mation on seminars, please

90402 (213) 394-8305. In E'uroj:)e:, con-
tact Savant, 2 New St, Carnforth,

Lancs., LA5 9BX United Kingdom
(0524) 734 505 %

