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0OP Goes Beyond the Commonsense Meaning of ‘Object’
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environments in which a data-modeling
language defines objects and relation-
ships. In fact, object-oriented technology
originated with languages designed for
simulation and is thriving in graphics
applications where the user manipulates
objects on the screen. However, the for-
mal term “object” has meaning beyond Hsord
the commonsense meaning of the word. pelq A e£

The programmer’s objects can repre- el
sent physical entities such as inventory '
items, but they can also represent more
abstract entities such as stacks, num-
bers, file-browsers, dispatchers or col-
lections.

Because it contains both data (proper-
ties) and procedures (behaviors), a pro-
gramming object can be used to
“modularize” any programming concept.
Examples include collections, which are
objects made up of other objects, and
browsers, which are procedures for ex-
amining files.

The properties of an object can't be
directly accessed from outside the ob-
Ject. They are only manipulated by the
behaviors of the object. The behaviors of
an object can only be invoked by send-
Ing messages to the object. The imple-
lnentation of the properties and
behaviors of an object is completely hid-
den from the outside. The object’s data
and processes are encapsulated within
the object. |

To illustrate this, let's look at portions
of a simple customer order-entry appli-
cation. The system has an ob ject—the
order—which has behaviors that allow
manipulation and inspection of its prop-

clrt.im. The definition might look like
this;

Ohject ¢

|
|

!

BUED |l
o o i B T |

know anything about the internal work-

ings of the inventory object. They sim- | :
ply have to know whick. messaggs e gory of parts can themselves be objects,

items. The inventory items in each cate-

_ _ _ such as screw or bolt. The invento
it el A "I';';';C;ag;' Fespona fo and fect inhell;its all the behaviors of the c{zrtl):
2 . SN €clion object and category obic

ass: order; property variables: “In a?dmm’ object-oriented languages  that with no furthertxigurlicy rroflc't;i o
st i ' | y rariables:  allow information to be organized con- grammer the cod gl nhis
e I n: quantity; behaviors: veri- ceptually. The object definitions are or- ventory jte 3 S had or delete In:
Yy process, back-order, add. ganized in a class hierarchy, as shown in ML

An important distinction needs to bhe
| the fi : ass
made between a class of objects and BS; A cinss above an object is its

7 : superclass, and the one below is a sub. "

particular objects. The definition of tJ ass ' o reorder.” Each of t}
e o - @ class. Objec aSSeS e

class of object “order” contains defini- R by subg GAh tnhgrit

tic | : any or all of the properties and

I,i:::l:r UI"? property variables. Each par- behaviors of the classes above. eneral chec

it "‘ object contains just the values The programmer working with an ob- - check-reorder behaviors from

Sﬂ;{{'iqlﬁ rvarll:lhlt's of that (fl;joct,, Mes- ject-oriented language defines classes of
+ e sent o the particular object. objects ranging from the general down from other

B — —

intuitive grasp of large and complex. Programmers imple-  class of the collection because the inven-

in designing which sends the same check reorder

message to all inventory type objects.
The ability of objects to respond to the
same message and each implement it ap-
propriately is called polymorp_m.sm. It is
one of the aspects of object-oriented pro-
gramming that simplifies complex code.

To better understand polymorphism,
let's look at the inventory object. One of
its behaviors checks all inventory fm:
iterns that might need reordering. It is
simple to make a loop that sends l:he*
check-reorder message to each of the in-
ventory items in the collection. The code

might look like this:

global-check-reorder :

doi= 1 toend

check-reorder — > inventory-item(i)

This has tremendous implications for
program maintainability. As new item
types are added to the inventory and
new procedures for checking reorders
are implemented, the code for the inven-
tory object never needs to be changed.
This is unlike a conventional application
that would need to dispatch the correct
reorder procedure for each inventory

type.
Fine-Tuned Inventory Control

In this example, polymorphism, cou-
pled with both the inheritance of reor-
der policies for standard parts and the

ability to customize and override the
standard policies for particular parts, al-
lows an organization to program more
complexity in the reordering logic of a
manufacturing application, thus giving
it more finely tuned inventory control
and a significant competitive advantage.

A number of languages are available
for programmers interested in experi-
menting with object-oriented program-
ming. The oldest and perhaps the purest
is Smalltalk, which has some excellent
Implementations on small machines. The
system enforces object-oriented pro-
gramming throughout and is an excel-
lent tool for learning pure object-orient-
ed programming.

A different approach is to enhance
existing languages with ob ject-oriented
capabilities. This is the approach taken
by C++ and Objective-C. which are
both C extensions, as well as Flavors, |
which is a LISP extension. While this
approach provides the familiarity of a
conventional language, it has the disad-

vantage of not forcing the programmer
to use object-oriented techniques consis-

tently. The programmer must unlearn

the p}'ocedural programming style that

[s SO Ingrained in anyone with even a

little programming experience. Old pro- |
gramming habits are hard to break.

. Nex_t week I'll look at examples of ob-
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