Pace 52

To help main-
tain and enhance
the billions of
lines of existing
application code,
programmers
need powerful
reverse-engineer-
ing tools that can
both derive pro-
cess models and
data models
from existing
code, and help
rebuild these ap-
plications within
a more modern distributed-processing
environment. |

Reverse-engineering is a software tech-
nology that has as its goal the migration
of old systems into a cleanly engineered
form that can be enhanced easily. The re-
ality is that true reverse-engineering tools
that convert existing data definitions and
procedural code into high-level specifica-
tions are not yet available.

For instance, computer-aided software
engineering (CASE) tools are oriented
toward the specification and implemen-
tation of new applications, and thus fall
short of providing much assistance in
the support and improvement of exist-
ing application code. ~

There's a lot of confusion in the field
about what is meant by reverse-engi-
neering. To clear up the confusion, con-
sider the three categories of tools that
support various components of reverse-
engineering:
® Restructuring Engines. These tools
automatically convert unstructured
source code (such as COBOL) into struc-

tured code. The goal is to reduce mainte-

nance costs, improve quality, extend the
life of old systems and enable program
enhancements to be made in much less
time. The process automatically creates
a structured version of the original

source code without changing its func-
tionality. | |

® Re-engineering Tools. These tools an-

alyze the source code to identify its
structure and detect data redundancies,
non-standard names and unused code. .
Documentation is produced that lists
cross-reference tables, structure charts
and relationships between files, records
and fields. An analyst can interact with
the tool to resolve inconsistencies and
restructure process or data definitions.

The standardized definitions can then be .

stored in the repository of a CASE tool
for further analysis. A
® Reverse-Engineering. The term “re-
verse-engineering” should be reserved
for tools that are capable of synthesiz-
Ing unstructured data definitions and
processing definitions up to the level of
pure specifications, independent of envi-
ronment. These specifications can then
be used in a forward-engineering process
to reimplement the application in the
same or a different environment, using
standard CASE techniques. Extraction
o!‘ specifications from existing data defi-
nitions and process code is an extraordi-
narily difficult task, which has been
solved, to date, only on the data side.
Mlost CASE tools that claim reverse-

PC WEEK\APPLICATION DEVELOPMENT

- APPLIED INTELLIGENCE

Making the CASE for True

engineering capabilities actually support
re-engineering functions. They don’t syn-
thesize low-level data and process defini-

tions up to the level of environment-
independent specifications.

The figure illustrates the functions
performed by a true reverse-engineering
tool. Reverse-engineering of data func-

tions are shown on the left of the figure;

reverse-engineering of process functions
are shown on the right.

As shown, conversion of data defini-
tions into specifications is done at three
levels: capture of physical data defini-
tions in the program; development of a
schema description contained in a data-
structure diagram; and conversion of the

version of data definitions into an integ'- :
" mediate form called a data-structure di-

agram. The data in the old program is
likely to be unnormalized. The data-
structure diagrams need to be normal-
ized and the normalized structure made
to conform to a data model.

The data model is a pure specifica-
tion, typically expressed in the form of
an entity-relationship diagram.

At this point, the data definitions
from the program have been converted
into a data model, at the specification
level. From that data model, new data
structures can be created for the same
database-management environment or a
different environment.

The Stages of Reverse and Forward Engineering

Goal Is To Convert Data Definitions and Program Code
Into Pure Specifications, Then Forward-Engineer to New Designs

Data structure
diagrams

LS - el T T
- . 1 W] g gy L
B S i A R e A
- 1_,!E7_-_|'-'|.'|-

'E._il- F

Redesigned
data
definitions

.| Captured
% data
~{ gefinitions |

- Procedure structure
-' diagrams

Redesigned | -
code 4T

. The reality is that true reverse-engineering tools that
. conwert existing data definitions and procedural code
- Into high-level specifications are not yet available.

data-structure diagram into a high-level
data model (or conceptual schema).

Low-level data definitions in the pro-

gram are first captured from existing
files and analyzed using a form of re-
engineering. A programmer can interact
with the tool to resolve inconsistencies
and produce more uniform data defini-
tions and data-element formats. Howev-
er, if data definitions from many appli-
cations are loaded into the tool, the
mess revealed may be so great that the
programmer is discouraged from clean-
Ing it up. Thus, it's generally desirable to
tackle a small area at a time. |
The result of this analysis is the con-

L] . .--j"l

The reverse-engineering of the data
side has been implemented by Bachman
Information Systems Inc. in its :
Baf:hman/Re-Engineering Product Set.
This product set is capable of capturing
data definitions in IMS, IDMS, DB2 and
VSM systems and then migrating these
designs from one database-management
system to another.

The product set can also be used to
Create data models for new applications,
w:uhich can then be migrated via direct
links to other CASE tools.

_ The Bachman too) set is implemented

g PRV SAERS S i L

APRIL 23, 1990

Reverse-Engineering Tools

the programmer or analyst what infor-
mation is missing to create a data-struc-

ture diagram or data model. The pro-
grammer fills in the missing pieces of in-
formation while interacting with the
system. .

Reverse-engineering the process side,
which requires converting unstructured
program code into high-level design
specifications that can be input into the
repository of a CASE tool, is proving
very difficult. The application may be
written with spaghetti code; it needs to
be converted to structured pro-
gramming.

Several tools exist for automatically
restructuring COBOL programs. The
product Recoder from Language Tech-
nology Inc., for example, converts CO-
BOL programs that are messy, unstruc-
tured and badly coded into fully struc-
tured COBOL.

The resulting program is functionally
identical to the original. The restruc-
tured code can be tested, perhaps with
the original test data, to ensure that it's
functionally equivalent to the original.

The restructuring process produces
structured source code but not process-

.model specifications. To support reverse-

engineering on the process side, it's nec-
essary to convert the structured code
into high-level specifications that ex-
tract the business functions performed
by the code. These specifications form
the basis for enhancing and maintaining
the application.

Action Diagrams

After the program has been converted
to a fully structured form, it should be
synthesized into a set of action diagrams
for a CASE tool. Action diagrams, which
define the process model for the applica-
tion, can be converted into other dia-
gram types (such as decomposition dia-
grams, structure charts or data-flow dia-
grams) and can be linked to data
models, screen designs and so on.

Although the structuring of source

- code can be done automatically, the ex-

traction of design specifications from
the structured code requires the assis-
tance of an analyst. The analyst inter-
acts with the system and fills in missing
data, such as logical groupings of busi-
ness processes, refinement of data flow
and consistent naming conventions.

No CASE tool currently supports re-
verse-engineering of unstructured source
code into process models at the specifi-
cation level. The introduction of such a
tool would be an invaluable addition to
the CASE market. :

Next week, I will discuss tools that

support re-engineering of existing source
code. B ‘

The concepts embodied in reverse-engi-
neering are described in the CASE vol-
ume in The James Martin Report Se-
res. For more information on this vol-
ume, call (800) 242-1240. For
information on seminars, contact (in
the United States and Canada) Tech-
nology Transfer Institute, 741 10th St.
Santa Monica, Calif. 90402 (213) 394-
8305. In Europe, contact Savant, 2
New St., Carnforth, Lancs., LA5 9BX
United Kingdom (0524) 734 505.

